A ( t ) = 500 ( 1 + 0.7 \% ) ^ { 4 t } = 800
Solve for t
t = \frac{\log_{1.007} {(1.6)}}{4} \approx 16.844526052
Share
Copied to clipboard
\left(1+\frac{0.7}{100}\right)^{4t}=\frac{800}{500}
Divide both sides by 500.
\left(1+\frac{0.7}{100}\right)^{4t}=\frac{8}{5}
Reduce the fraction \frac{800}{500} to lowest terms by extracting and canceling out 100.
\left(1+\frac{7}{1000}\right)^{4t}=\frac{8}{5}
Expand \frac{0.7}{100} by multiplying both numerator and the denominator by 10.
\left(\frac{1007}{1000}\right)^{4t}=\frac{8}{5}
Add 1 and \frac{7}{1000} to get \frac{1007}{1000}.
\log(\left(\frac{1007}{1000}\right)^{4t})=\log(\frac{8}{5})
Take the logarithm of both sides of the equation.
4t\log(\frac{1007}{1000})=\log(\frac{8}{5})
The logarithm of a number raised to a power is the power times the logarithm of the number.
4t=\frac{\log(\frac{8}{5})}{\log(\frac{1007}{1000})}
Divide both sides by \log(\frac{1007}{1000}).
4t=\log_{\frac{1007}{1000}}\left(\frac{8}{5}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(\frac{8}{5})}{4\ln(\frac{1007}{1000})}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}