A ( 8,3 ) = 3530 B ( 2,11 )
Solve for A
A=\frac{74483B}{83}
Solve for B
B=\frac{83A}{74483}
Share
Copied to clipboard
A\times 8,3=7448,3B
Multiply 3530 and 2,11 to get 7448,3.
8,3A=\frac{74483B}{10}
The equation is in standard form.
\frac{8,3A}{8,3}=\frac{74483B}{8,3\times 10}
Divide both sides of the equation by 8,3, which is the same as multiplying both sides by the reciprocal of the fraction.
A=\frac{74483B}{8,3\times 10}
Dividing by 8,3 undoes the multiplication by 8,3.
A=\frac{74483B}{83}
Divide \frac{74483B}{10} by 8,3 by multiplying \frac{74483B}{10} by the reciprocal of 8,3.
A\times 8,3=7448,3B
Multiply 3530 and 2,11 to get 7448,3.
7448,3B=A\times 8,3
Swap sides so that all variable terms are on the left hand side.
7448,3B=\frac{83A}{10}
The equation is in standard form.
\frac{7448,3B}{7448,3}=\frac{83A}{10\times 7448,3}
Divide both sides of the equation by 7448,3, which is the same as multiplying both sides by the reciprocal of the fraction.
B=\frac{83A}{10\times 7448,3}
Dividing by 7448,3 undoes the multiplication by 7448,3.
B=\frac{83A}{74483}
Divide \frac{83A}{10} by 7448,3 by multiplying \frac{83A}{10} by the reciprocal of 7448,3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}