Solve for A
A=\frac{19x}{2\left(7x+10\beta ∂\right)}
x\neq -\frac{10\beta ∂}{7}\text{ and }x\neq 0
Solve for x
\left\{\begin{matrix}\\x\neq 0\text{, }&\text{unconditionally}\\x=-\frac{20A\beta ∂}{14A-19}\text{, }&∂\neq 0\text{ and }\beta \neq 0\text{ and }A\neq 0\text{ and }A\neq \frac{19}{14}\end{matrix}\right.
Graph
Share
Copied to clipboard
A\left(∂\beta +0.7x\right)=0.95x
Multiply both sides of the equation by x.
A∂\beta +0.7Ax=0.95x
Use the distributive property to multiply A by ∂\beta +0.7x.
\left(∂\beta +0.7x\right)A=0.95x
Combine all terms containing A.
\left(\beta ∂+\frac{7x}{10}\right)A=\frac{19x}{20}
The equation is in standard form.
\frac{\left(\beta ∂+\frac{7x}{10}\right)A}{\beta ∂+\frac{7x}{10}}=\frac{19x}{20\left(\beta ∂+\frac{7x}{10}\right)}
Divide both sides by ∂\beta +0.7x.
A=\frac{19x}{20\left(\beta ∂+\frac{7x}{10}\right)}
Dividing by ∂\beta +0.7x undoes the multiplication by ∂\beta +0.7x.
A=\frac{19x}{2\left(7x+10\beta ∂\right)}
Divide \frac{19x}{20} by ∂\beta +0.7x.
A\left(∂\beta +0.7x\right)=0.95x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
A∂\beta +0.7Ax=0.95x
Use the distributive property to multiply A by ∂\beta +0.7x.
A∂\beta +0.7Ax-0.95x=0
Subtract 0.95x from both sides.
0.7Ax-0.95x=-A∂\beta
Subtract A∂\beta from both sides. Anything subtracted from zero gives its negation.
0.7Ax-0.95x=-A\beta ∂
Reorder the terms.
\left(0.7A-0.95\right)x=-A\beta ∂
Combine all terms containing x.
\left(\frac{7A}{10}-0.95\right)x=-A\beta ∂
The equation is in standard form.
\frac{\left(\frac{7A}{10}-0.95\right)x}{\frac{7A}{10}-0.95}=-\frac{A\beta ∂}{\frac{7A}{10}-0.95}
Divide both sides by 0.7A-0.95.
x=-\frac{A\beta ∂}{\frac{7A}{10}-0.95}
Dividing by 0.7A-0.95 undoes the multiplication by 0.7A-0.95.
x=-\frac{A\beta ∂}{\frac{7A}{10}-0.95}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}