Skip to main content
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

A^{2}+A^{2}\left(\sqrt{5}\right)^{2}=-4^{2}
Expand \left(A\sqrt{5}\right)^{2}.
A^{2}+A^{2}\times 5=-4^{2}
The square of \sqrt{5} is 5.
6A^{2}=-4^{2}
Combine A^{2} and A^{2}\times 5 to get 6A^{2}.
6A^{2}=-16
Calculate 4 to the power of 2 and get 16.
A^{2}=\frac{-16}{6}
Divide both sides by 6.
A^{2}=-\frac{8}{3}
Reduce the fraction \frac{-16}{6} to lowest terms by extracting and canceling out 2.
A=\frac{2\sqrt{6}i}{3} A=-\frac{2\sqrt{6}i}{3}
The equation is now solved.
A^{2}+A^{2}\left(\sqrt{5}\right)^{2}=-4^{2}
Expand \left(A\sqrt{5}\right)^{2}.
A^{2}+A^{2}\times 5=-4^{2}
The square of \sqrt{5} is 5.
6A^{2}=-4^{2}
Combine A^{2} and A^{2}\times 5 to get 6A^{2}.
6A^{2}=-16
Calculate 4 to the power of 2 and get 16.
6A^{2}+16=0
Add 16 to both sides.
A=\frac{0±\sqrt{0^{2}-4\times 6\times 16}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\times 6\times 16}}{2\times 6}
Square 0.
A=\frac{0±\sqrt{-24\times 16}}{2\times 6}
Multiply -4 times 6.
A=\frac{0±\sqrt{-384}}{2\times 6}
Multiply -24 times 16.
A=\frac{0±8\sqrt{6}i}{2\times 6}
Take the square root of -384.
A=\frac{0±8\sqrt{6}i}{12}
Multiply 2 times 6.
A=\frac{2\sqrt{6}i}{3}
Now solve the equation A=\frac{0±8\sqrt{6}i}{12} when ± is plus.
A=-\frac{2\sqrt{6}i}{3}
Now solve the equation A=\frac{0±8\sqrt{6}i}{12} when ± is minus.
A=\frac{2\sqrt{6}i}{3} A=-\frac{2\sqrt{6}i}{3}
The equation is now solved.