Solve for A
A=11a-10
Solve for a
a=\frac{A+10}{11}
Share
Copied to clipboard
A=8a-16-3\left(-a-2\right)
Use the distributive property to multiply 8 by a-2.
A=8a-16-3\left(-a\right)+6
Use the distributive property to multiply -3 by -a-2.
A=8a-16+3a+6
Multiply -3 and -1 to get 3.
A=11a-16+6
Combine 8a and 3a to get 11a.
A=11a-10
Add -16 and 6 to get -10.
A=8a-16-3\left(-a-2\right)
Use the distributive property to multiply 8 by a-2.
A=8a-16-3\left(-a\right)+6
Use the distributive property to multiply -3 by -a-2.
A=8a-16+3a+6
Multiply -3 and -1 to get 3.
A=11a-16+6
Combine 8a and 3a to get 11a.
A=11a-10
Add -16 and 6 to get -10.
11a-10=A
Swap sides so that all variable terms are on the left hand side.
11a=A+10
Add 10 to both sides.
\frac{11a}{11}=\frac{A+10}{11}
Divide both sides by 11.
a=\frac{A+10}{11}
Dividing by 11 undoes the multiplication by 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}