Solve for A (complex solution)
A=-\left(\left(4-5p\right)^{I}-56x+42\right)
Solve for I (complex solution)
\left\{\begin{matrix}I=\frac{2i\pi n_{1}}{\ln(4-5p)}+\log_{4-5p}\left(-\left(42+A-56x\right)\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&A\neq 56x-42\text{ and }p\neq \frac{3}{5}\text{ and }p\neq \frac{4}{5}\\I\in \mathrm{C}\text{, }&\left(p=\frac{4}{5}\text{ and }A=56x-42\right)\text{ or }\left(p=\frac{3}{5}\text{ and }A=56x-43\right)\end{matrix}\right.
Solve for A
A=-\left(\left(4-5p\right)^{I}-56x+42\right)
\left(p>\frac{4}{5}\text{ and }Denominator(I)\text{bmod}2=1\right)\text{ or }\left(p=\frac{4}{5}\text{ and }I>0\right)\text{ or }p<\frac{4}{5}
Solve for I
\left\{\begin{matrix}I=\log_{4-5p}\left(56x-A-42\right)\text{, }&A<56x-42\text{ and }p\neq \frac{3}{5}\text{ and }p<\frac{4}{5}\\I\in \mathrm{R}\text{, }&\left(p=\frac{3}{5}\text{ and }A=56x-43\right)\text{ or }\left(p=1\text{ and }A=56x-41\text{ and }Denominator(I)\text{bmod}2=1\text{ and }Numerator(I)\text{bmod}2=1\right)\\I>0\text{, }&p=\frac{4}{5}\text{ and }A=56x-42\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}