Solve for A
A=12.75
Assign A
A≔12.75
Share
Copied to clipboard
A=4+\frac{125}{20}\times 3-10
Expand \frac{12.5}{2} by multiplying both numerator and the denominator by 10.
A=4+\frac{25}{4}\times 3-10
Reduce the fraction \frac{125}{20} to lowest terms by extracting and canceling out 5.
A=4+\frac{25\times 3}{4}-10
Express \frac{25}{4}\times 3 as a single fraction.
A=4+\frac{75}{4}-10
Multiply 25 and 3 to get 75.
A=\frac{16}{4}+\frac{75}{4}-10
Convert 4 to fraction \frac{16}{4}.
A=\frac{16+75}{4}-10
Since \frac{16}{4} and \frac{75}{4} have the same denominator, add them by adding their numerators.
A=\frac{91}{4}-10
Add 16 and 75 to get 91.
A=\frac{91}{4}-\frac{40}{4}
Convert 10 to fraction \frac{40}{4}.
A=\frac{91-40}{4}
Since \frac{91}{4} and \frac{40}{4} have the same denominator, subtract them by subtracting their numerators.
A=\frac{51}{4}
Subtract 40 from 91 to get 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}