Solve for A
A=31x+32
Solve for x
x=\frac{A-32}{31}
Graph
Share
Copied to clipboard
A=3x+24+4\left(7x+2\right)
Use the distributive property to multiply 3 by x+8.
A=3x+24+28x+8
Use the distributive property to multiply 4 by 7x+2.
A=31x+24+8
Combine 3x and 28x to get 31x.
A=31x+32
Add 24 and 8 to get 32.
A=3x+24+4\left(7x+2\right)
Use the distributive property to multiply 3 by x+8.
A=3x+24+28x+8
Use the distributive property to multiply 4 by 7x+2.
A=31x+24+8
Combine 3x and 28x to get 31x.
A=31x+32
Add 24 and 8 to get 32.
31x+32=A
Swap sides so that all variable terms are on the left hand side.
31x=A-32
Subtract 32 from both sides.
\frac{31x}{31}=\frac{A-32}{31}
Divide both sides by 31.
x=\frac{A-32}{31}
Dividing by 31 undoes the multiplication by 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}