A = 2700 ( 1 + 0091 \cdot 2 / 12
Solve for A
A=43650
Assign A
A≔43650
Share
Copied to clipboard
A=2700\left(1+91\times \frac{1}{6}\right)
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
A=2700\left(1+\frac{91}{6}\right)
Multiply 91 and \frac{1}{6} to get \frac{91}{6}.
A=2700\left(\frac{6}{6}+\frac{91}{6}\right)
Convert 1 to fraction \frac{6}{6}.
A=2700\times \frac{6+91}{6}
Since \frac{6}{6} and \frac{91}{6} have the same denominator, add them by adding their numerators.
A=2700\times \frac{97}{6}
Add 6 and 91 to get 97.
A=\frac{2700\times 97}{6}
Express 2700\times \frac{97}{6} as a single fraction.
A=\frac{261900}{6}
Multiply 2700 and 97 to get 261900.
A=43650
Divide 261900 by 6 to get 43650.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}