A = 2700 ( 1 + 0.091 \cdot 2 / 12
Solve for A
A=2740.95
Assign A
A≔2740.95
Share
Copied to clipboard
A=2700\left(1+0.091\times \frac{1}{6}\right)
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
A=2700\left(1+\frac{91}{1000}\times \frac{1}{6}\right)
Convert decimal number 0.091 to fraction \frac{91}{1000}.
A=2700\left(1+\frac{91\times 1}{1000\times 6}\right)
Multiply \frac{91}{1000} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
A=2700\left(1+\frac{91}{6000}\right)
Do the multiplications in the fraction \frac{91\times 1}{1000\times 6}.
A=2700\left(\frac{6000}{6000}+\frac{91}{6000}\right)
Convert 1 to fraction \frac{6000}{6000}.
A=2700\times \frac{6000+91}{6000}
Since \frac{6000}{6000} and \frac{91}{6000} have the same denominator, add them by adding their numerators.
A=2700\times \frac{6091}{6000}
Add 6000 and 91 to get 6091.
A=\frac{2700\times 6091}{6000}
Express 2700\times \frac{6091}{6000} as a single fraction.
A=\frac{16445700}{6000}
Multiply 2700 and 6091 to get 16445700.
A=\frac{54819}{20}
Reduce the fraction \frac{16445700}{6000} to lowest terms by extracting and canceling out 300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}