A = 2600 ( 1 + ( 0.055 / 12 ) ( 12 - 25 )
Solve for A
A = \frac{29341}{12} = 2445\frac{1}{12} \approx 2445.083333333
Assign A
A≔\frac{29341}{12}
Share
Copied to clipboard
A=2600\left(1+\frac{55}{12000}\left(12-25\right)\right)
Expand \frac{0.055}{12} by multiplying both numerator and the denominator by 1000.
A=2600\left(1+\frac{11}{2400}\left(12-25\right)\right)
Reduce the fraction \frac{55}{12000} to lowest terms by extracting and canceling out 5.
A=2600\left(1+\frac{11}{2400}\left(-13\right)\right)
Subtract 25 from 12 to get -13.
A=2600\left(1+\frac{11\left(-13\right)}{2400}\right)
Express \frac{11}{2400}\left(-13\right) as a single fraction.
A=2600\left(1+\frac{-143}{2400}\right)
Multiply 11 and -13 to get -143.
A=2600\left(1-\frac{143}{2400}\right)
Fraction \frac{-143}{2400} can be rewritten as -\frac{143}{2400} by extracting the negative sign.
A=2600\left(\frac{2400}{2400}-\frac{143}{2400}\right)
Convert 1 to fraction \frac{2400}{2400}.
A=2600\times \frac{2400-143}{2400}
Since \frac{2400}{2400} and \frac{143}{2400} have the same denominator, subtract them by subtracting their numerators.
A=2600\times \frac{2257}{2400}
Subtract 143 from 2400 to get 2257.
A=\frac{2600\times 2257}{2400}
Express 2600\times \frac{2257}{2400} as a single fraction.
A=\frac{5868200}{2400}
Multiply 2600 and 2257 to get 5868200.
A=\frac{29341}{12}
Reduce the fraction \frac{5868200}{2400} to lowest terms by extracting and canceling out 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}