Solve for A
A=\frac{7a}{5}+b+1.4
Solve for a
a=\frac{5A}{7}-\frac{5b}{7}-1
Share
Copied to clipboard
A=1.4a+2\times 0.5b+4\times 0.5\times 0.7
Multiply 2 and 0.7 to get 1.4.
A=1.4a+b+4\times 0.5\times 0.7
Multiply 2 and 0.5 to get 1.
A=1.4a+b+2\times 0.7
Multiply 4 and 0.5 to get 2.
A=1.4a+b+1.4
Multiply 2 and 0.7 to get 1.4.
A=1.4a+2\times 0.5b+4\times 0.5\times 0.7
Multiply 2 and 0.7 to get 1.4.
A=1.4a+b+4\times 0.5\times 0.7
Multiply 2 and 0.5 to get 1.
A=1.4a+b+2\times 0.7
Multiply 4 and 0.5 to get 2.
A=1.4a+b+1.4
Multiply 2 and 0.7 to get 1.4.
1.4a+b+1.4=A
Swap sides so that all variable terms are on the left hand side.
1.4a+1.4=A-b
Subtract b from both sides.
1.4a=A-b-1.4
Subtract 1.4 from both sides.
\frac{1.4a}{1.4}=\frac{A-b-1.4}{1.4}
Divide both sides of the equation by 1.4, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{A-b-1.4}{1.4}
Dividing by 1.4 undoes the multiplication by 1.4.
a=\frac{5A}{7}-\frac{5b}{7}-1
Divide A-b-1.4 by 1.4 by multiplying A-b-1.4 by the reciprocal of 1.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}