A = 123 ( 1 + 0.13 \cdot 4 / 12
Solve for A
A=128.33
Assign A
A≔128.33
Share
Copied to clipboard
A=123\left(1+0.13\times \frac{1}{3}\right)
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
A=123\left(1+\frac{13}{100}\times \frac{1}{3}\right)
Convert decimal number 0.13 to fraction \frac{13}{100}.
A=123\left(1+\frac{13\times 1}{100\times 3}\right)
Multiply \frac{13}{100} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
A=123\left(1+\frac{13}{300}\right)
Do the multiplications in the fraction \frac{13\times 1}{100\times 3}.
A=123\left(\frac{300}{300}+\frac{13}{300}\right)
Convert 1 to fraction \frac{300}{300}.
A=123\times \frac{300+13}{300}
Since \frac{300}{300} and \frac{13}{300} have the same denominator, add them by adding their numerators.
A=123\times \frac{313}{300}
Add 300 and 13 to get 313.
A=\frac{123\times 313}{300}
Express 123\times \frac{313}{300} as a single fraction.
A=\frac{38499}{300}
Multiply 123 and 313 to get 38499.
A=\frac{12833}{100}
Reduce the fraction \frac{38499}{300} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}