Solve for A
A = \frac{553092726310835924575445943601}{53144100000000000000000000} = 10407\frac{2.2077610835963943 \times 10^{25}}{5.314409999999999 \times 10^{25}} \approx 10407.415429198
Assign A
A≔\frac{553092726310835924575445943601}{53144100000000000000000000}
Share
Copied to clipboard
A=10000\left(1+\frac{4}{1200}\right)^{12\times 1}
Expand \frac{0.04}{12} by multiplying both numerator and the denominator by 100.
A=10000\left(1+\frac{1}{300}\right)^{12\times 1}
Reduce the fraction \frac{4}{1200} to lowest terms by extracting and canceling out 4.
A=10000\times \left(\frac{301}{300}\right)^{12\times 1}
Add 1 and \frac{1}{300} to get \frac{301}{300}.
A=10000\times \left(\frac{301}{300}\right)^{12}
Multiply 12 and 1 to get 12.
A=10000\times \frac{553092726310835924575445943601}{531441000000000000000000000000}
Calculate \frac{301}{300} to the power of 12 and get \frac{553092726310835924575445943601}{531441000000000000000000000000}.
A=\frac{553092726310835924575445943601}{53144100000000000000000000}
Multiply 10000 and \frac{553092726310835924575445943601}{531441000000000000000000000000} to get \frac{553092726310835924575445943601}{53144100000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}