Solve for A
A=3
Assign A
A≔3
Share
Copied to clipboard
A=1-\frac{-\left(-5\right)}{2\times 3}-\frac{\frac{4}{3}}{\frac{1}{2}-1}+\frac{1}{6}
Multiply -\frac{1}{2} times -\frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
A=1-\frac{5}{6}-\frac{\frac{4}{3}}{\frac{1}{2}-1}+\frac{1}{6}
Do the multiplications in the fraction \frac{-\left(-5\right)}{2\times 3}.
A=\frac{6}{6}-\frac{5}{6}-\frac{\frac{4}{3}}{\frac{1}{2}-1}+\frac{1}{6}
Convert 1 to fraction \frac{6}{6}.
A=\frac{6-5}{6}-\frac{\frac{4}{3}}{\frac{1}{2}-1}+\frac{1}{6}
Since \frac{6}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
A=\frac{1}{6}-\frac{\frac{4}{3}}{\frac{1}{2}-1}+\frac{1}{6}
Subtract 5 from 6 to get 1.
A=\frac{1}{6}-\frac{\frac{4}{3}}{\frac{1}{2}-\frac{2}{2}}+\frac{1}{6}
Convert 1 to fraction \frac{2}{2}.
A=\frac{1}{6}-\frac{\frac{4}{3}}{\frac{1-2}{2}}+\frac{1}{6}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
A=\frac{1}{6}-\frac{\frac{4}{3}}{-\frac{1}{2}}+\frac{1}{6}
Subtract 2 from 1 to get -1.
A=\frac{1}{6}-\frac{4}{3}\left(-2\right)+\frac{1}{6}
Divide \frac{4}{3} by -\frac{1}{2} by multiplying \frac{4}{3} by the reciprocal of -\frac{1}{2}.
A=\frac{1}{6}-\frac{4\left(-2\right)}{3}+\frac{1}{6}
Express \frac{4}{3}\left(-2\right) as a single fraction.
A=\frac{1}{6}-\frac{-8}{3}+\frac{1}{6}
Multiply 4 and -2 to get -8.
A=\frac{1}{6}-\left(-\frac{8}{3}\right)+\frac{1}{6}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
A=\frac{1}{6}+\frac{8}{3}+\frac{1}{6}
The opposite of -\frac{8}{3} is \frac{8}{3}.
A=\frac{1}{6}+\frac{16}{6}+\frac{1}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{8}{3} to fractions with denominator 6.
A=\frac{1+16}{6}+\frac{1}{6}
Since \frac{1}{6} and \frac{16}{6} have the same denominator, add them by adding their numerators.
A=\frac{17}{6}+\frac{1}{6}
Add 1 and 16 to get 17.
A=\frac{17+1}{6}
Since \frac{17}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
A=\frac{18}{6}
Add 17 and 1 to get 18.
A=3
Divide 18 by 6 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}