Skip to main content
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

A+\sqrt{1-A}=0
Add \sqrt{1-A} to both sides.
\sqrt{1-A}=-A
Subtract A from both sides of the equation.
\left(\sqrt{1-A}\right)^{2}=\left(-A\right)^{2}
Square both sides of the equation.
1-A=\left(-A\right)^{2}
Calculate \sqrt{1-A} to the power of 2 and get 1-A.
1-A=\left(-1\right)^{2}A^{2}
Expand \left(-A\right)^{2}.
1-A=1A^{2}
Calculate -1 to the power of 2 and get 1.
1-A-A^{2}=0
Subtract 1A^{2} from both sides.
-A^{2}-A+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
A=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{-\left(-1\right)±\sqrt{1+4}}{2\left(-1\right)}
Multiply -4 times -1.
A=\frac{-\left(-1\right)±\sqrt{5}}{2\left(-1\right)}
Add 1 to 4.
A=\frac{1±\sqrt{5}}{2\left(-1\right)}
The opposite of -1 is 1.
A=\frac{1±\sqrt{5}}{-2}
Multiply 2 times -1.
A=\frac{\sqrt{5}+1}{-2}
Now solve the equation A=\frac{1±\sqrt{5}}{-2} when ± is plus. Add 1 to \sqrt{5}.
A=\frac{-\sqrt{5}-1}{2}
Divide 1+\sqrt{5} by -2.
A=\frac{1-\sqrt{5}}{-2}
Now solve the equation A=\frac{1±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from 1.
A=\frac{\sqrt{5}-1}{2}
Divide 1-\sqrt{5} by -2.
A=\frac{-\sqrt{5}-1}{2} A=\frac{\sqrt{5}-1}{2}
The equation is now solved.
\frac{-\sqrt{5}-1}{2}=-\sqrt{1-\frac{-\sqrt{5}-1}{2}}
Substitute \frac{-\sqrt{5}-1}{2} for A in the equation A=-\sqrt{1-A}.
-\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}=-\left(\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}\right)
Simplify. The value A=\frac{-\sqrt{5}-1}{2} satisfies the equation.
\frac{\sqrt{5}-1}{2}=-\sqrt{1-\frac{\sqrt{5}-1}{2}}
Substitute \frac{\sqrt{5}-1}{2} for A in the equation A=-\sqrt{1-A}.
\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value A=\frac{\sqrt{5}-1}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
A=\frac{-\sqrt{5}-1}{2}
Equation \sqrt{1-A}=-A has a unique solution.