Solve for A
A = -\frac{976}{855} = -1\frac{121}{855} \approx -1.141520468
Assign A
A≔-\frac{976}{855}
Share
Copied to clipboard
A=-\frac{6}{30}-\frac{25}{30}+\frac{1}{2}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Least common multiple of 5 and 6 is 30. Convert -\frac{1}{5} and \frac{5}{6} to fractions with denominator 30.
A=\frac{-6-25}{30}+\frac{1}{2}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Since -\frac{6}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
A=-\frac{31}{30}+\frac{1}{2}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Subtract 25 from -6 to get -31.
A=-\frac{31}{30}+\frac{15}{30}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Least common multiple of 30 and 2 is 30. Convert -\frac{31}{30} and \frac{1}{2} to fractions with denominator 30.
A=\frac{-31+15}{30}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Since -\frac{31}{30} and \frac{15}{30} have the same denominator, add them by adding their numerators.
A=\frac{-16}{30}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Add -31 and 15 to get -16.
A=-\frac{8}{15}-\frac{1}{19}-\frac{2}{3}+\frac{1}{9}
Reduce the fraction \frac{-16}{30} to lowest terms by extracting and canceling out 2.
A=-\frac{152}{285}-\frac{15}{285}-\frac{2}{3}+\frac{1}{9}
Least common multiple of 15 and 19 is 285. Convert -\frac{8}{15} and \frac{1}{19} to fractions with denominator 285.
A=\frac{-152-15}{285}-\frac{2}{3}+\frac{1}{9}
Since -\frac{152}{285} and \frac{15}{285} have the same denominator, subtract them by subtracting their numerators.
A=-\frac{167}{285}-\frac{2}{3}+\frac{1}{9}
Subtract 15 from -152 to get -167.
A=-\frac{167}{285}-\frac{190}{285}+\frac{1}{9}
Least common multiple of 285 and 3 is 285. Convert -\frac{167}{285} and \frac{2}{3} to fractions with denominator 285.
A=\frac{-167-190}{285}+\frac{1}{9}
Since -\frac{167}{285} and \frac{190}{285} have the same denominator, subtract them by subtracting their numerators.
A=\frac{-357}{285}+\frac{1}{9}
Subtract 190 from -167 to get -357.
A=-\frac{119}{95}+\frac{1}{9}
Reduce the fraction \frac{-357}{285} to lowest terms by extracting and canceling out 3.
A=-\frac{1071}{855}+\frac{95}{855}
Least common multiple of 95 and 9 is 855. Convert -\frac{119}{95} and \frac{1}{9} to fractions with denominator 855.
A=\frac{-1071+95}{855}
Since -\frac{1071}{855} and \frac{95}{855} have the same denominator, add them by adding their numerators.
A=-\frac{976}{855}
Add -1071 and 95 to get -976.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}