Solve for A
A=\frac{B+2T}{22}
B\neq 0
Solve for B
B=22A-2T
A\neq \frac{T}{11}
Share
Copied to clipboard
A=\left(\frac{B}{2B}+\frac{2T}{2B}\right)\times \frac{B}{11}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and B is 2B. Multiply \frac{1}{2} times \frac{B}{B}. Multiply \frac{T}{B} times \frac{2}{2}.
A=\frac{B+2T}{2B}\times \frac{B}{11}
Since \frac{B}{2B} and \frac{2T}{2B} have the same denominator, add them by adding their numerators.
A=\frac{\left(B+2T\right)B}{2B\times 11}
Multiply \frac{B+2T}{2B} times \frac{B}{11} by multiplying numerator times numerator and denominator times denominator.
A=\frac{B+2T}{2\times 11}
Cancel out B in both numerator and denominator.
A=\frac{B+2T}{22}
Multiply 2 and 11 to get 22.
A=\frac{1}{22}B+\frac{1}{11}T
Divide each term of B+2T by 22 to get \frac{1}{22}B+\frac{1}{11}T.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}