Solve for A
A = \frac{17}{18} = 0.9444444444444444
Solve for B
B = -\frac{17}{18} = -0.9444444444444444
Share
Copied to clipboard
A=\left(-\frac{5}{8}+\frac{-1}{12}\right)\times \frac{4}{-3}+1B
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
A=\left(-\frac{5}{8}-\frac{1}{12}\right)\times \frac{4}{-3}+1B
Fraction \frac{-1}{12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
A=-\frac{17}{24}\times \frac{4}{-3}+1B
Subtract \frac{1}{12} from -\frac{5}{8} to get -\frac{17}{24}.
A=-\frac{17}{24}\left(-\frac{4}{3}\right)+1B
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
A=\frac{17}{18}+1B
Multiply -\frac{17}{24} and -\frac{4}{3} to get \frac{17}{18}.
A=B+\frac{17}{18}
Reorder the terms.
A=\left(-\frac{5}{8}+\frac{-1}{12}\right)\times \frac{4}{-3}+1B
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
A=\left(-\frac{5}{8}-\frac{1}{12}\right)\times \frac{4}{-3}+1B
Fraction \frac{-1}{12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
A=-\frac{17}{24}\times \frac{4}{-3}+1B
Subtract \frac{1}{12} from -\frac{5}{8} to get -\frac{17}{24}.
A=-\frac{17}{24}\left(-\frac{4}{3}\right)+1B
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
A=\frac{17}{18}+1B
Multiply -\frac{17}{24} and -\frac{4}{3} to get \frac{17}{18}.
\frac{17}{18}+1B=A
Swap sides so that all variable terms are on the left hand side.
1B=A-\frac{17}{18}
Subtract \frac{17}{18} from both sides.
B=A-\frac{17}{18}
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}