Solve for a
a=A^{2}+8
A\geq 0
Solve for A
A=\sqrt{a-8}
a\geq 8
Share
Copied to clipboard
A=\sqrt{a^{2}+7a-\left(a+4\right)\left(a+2\right)}
Combine 6a and a to get 7a.
A=\sqrt{a^{2}+7a-\left(a^{2}+6a+8\right)}
Use the distributive property to multiply a+4 by a+2 and combine like terms.
A=\sqrt{a^{2}+7a-a^{2}-6a-8}
To find the opposite of a^{2}+6a+8, find the opposite of each term.
A=\sqrt{7a-6a-8}
Combine a^{2} and -a^{2} to get 0.
A=\sqrt{a-8}
Combine 7a and -6a to get a.
\sqrt{a-8}=A
Swap sides so that all variable terms are on the left hand side.
a-8=A^{2}
Square both sides of the equation.
a-8-\left(-8\right)=A^{2}-\left(-8\right)
Add 8 to both sides of the equation.
a=A^{2}-\left(-8\right)
Subtracting -8 from itself leaves 0.
a=A^{2}+8
Subtract -8 from A^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}