Solve for p
\left\{\begin{matrix}p=-q+\left(\frac{A}{\pi r}\right)^{2}\text{, }&\left(A\geq 0\text{ and }r>0\right)\text{ or }\left(A\leq 0\text{ and }r<0\right)\\p\geq -q\text{, }&A=0\text{ and }r=0\end{matrix}\right.
Solve for A
A=\pi \sqrt{p+q}r
p\geq -q
Share
Copied to clipboard
\pi r\sqrt{p+q}=A
Swap sides so that all variable terms are on the left hand side.
\frac{\pi r\sqrt{p+q}}{\pi r}=\frac{A}{\pi r}
Divide both sides by \pi r.
\sqrt{p+q}=\frac{A}{\pi r}
Dividing by \pi r undoes the multiplication by \pi r.
p+q=\frac{A^{2}}{\left(\pi r\right)^{2}}
Square both sides of the equation.
p+q-q=\frac{A^{2}}{\left(\pi r\right)^{2}}-q
Subtract q from both sides of the equation.
p=\frac{A^{2}}{\left(\pi r\right)^{2}}-q
Subtracting q from itself leaves 0.
p=-q+\frac{A^{2}}{\left(\pi r\right)^{2}}
Subtract q from \frac{A^{2}}{\left(\pi r\right)^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}