Solve for A
A=\frac{7\sqrt{6}+28\sqrt{2}-7\sqrt{21}-23\sqrt{7}}{5}\approx -7.237180415
Assign A
A≔\frac{7\sqrt{6}}{5}+\frac{84\sqrt{2}}{15}-\frac{7\sqrt{21}}{5}-\frac{69\sqrt{7}}{15}
Share
Copied to clipboard
A=\frac{7-\frac{21\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-28+\sqrt{14}}{\sqrt{7}+\sqrt{2}}
Rationalize the denominator of \frac{21}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
A=\frac{7-\frac{21\sqrt{3}}{3}-28+\sqrt{14}}{\sqrt{7}+\sqrt{2}}
The square of \sqrt{3} is 3.
A=\frac{7-7\sqrt{3}-28+\sqrt{14}}{\sqrt{7}+\sqrt{2}}
Divide 21\sqrt{3} by 3 to get 7\sqrt{3}.
A=\frac{-21-7\sqrt{3}+\sqrt{14}}{\sqrt{7}+\sqrt{2}}
Subtract 28 from 7 to get -21.
A=\frac{\left(-21-7\sqrt{3}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)}
Rationalize the denominator of \frac{-21-7\sqrt{3}+\sqrt{14}}{\sqrt{7}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{2}.
A=\frac{\left(-21-7\sqrt{3}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\frac{\left(-21-7\sqrt{3}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)}{7-2}
Square \sqrt{7}. Square \sqrt{2}.
A=\frac{\left(-21-7\sqrt{3}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)}{5}
Subtract 2 from 7 to get 5.
A=\frac{-21\sqrt{7}+21\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}-\left(-7\sqrt{3}\right)\sqrt{2}+\sqrt{14}\sqrt{7}-\sqrt{14}\sqrt{2}}{5}
Apply the distributive property by multiplying each term of -21-7\sqrt{3}+\sqrt{14} by each term of \sqrt{7}-\sqrt{2}.
A=\frac{-21\sqrt{7}+21\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}+\sqrt{14}\sqrt{7}-\sqrt{14}\sqrt{2}}{5}
Multiply -1 and -1 to get 1.
A=\frac{-21\sqrt{7}+21\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}+\sqrt{7}\sqrt{2}\sqrt{7}-\sqrt{14}\sqrt{2}}{5}
Factor 14=7\times 2. Rewrite the square root of the product \sqrt{7\times 2} as the product of square roots \sqrt{7}\sqrt{2}.
A=\frac{-21\sqrt{7}+21\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}+7\sqrt{2}-\sqrt{14}\sqrt{2}}{5}
Multiply \sqrt{7} and \sqrt{7} to get 7.
A=\frac{-21\sqrt{7}+28\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}-\sqrt{14}\sqrt{2}}{5}
Combine 21\sqrt{2} and 7\sqrt{2} to get 28\sqrt{2}.
A=\frac{-21\sqrt{7}+28\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}-\sqrt{2}\sqrt{7}\sqrt{2}}{5}
Factor 14=2\times 7. Rewrite the square root of the product \sqrt{2\times 7} as the product of square roots \sqrt{2}\sqrt{7}.
A=\frac{-21\sqrt{7}+28\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}-2\sqrt{7}}{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
A=\frac{-23\sqrt{7}+28\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{3}\sqrt{2}}{5}
Combine -21\sqrt{7} and -2\sqrt{7} to get -23\sqrt{7}.
A=\frac{-23\sqrt{7}+28\sqrt{2}+\left(-7\sqrt{3}\right)\sqrt{7}+7\sqrt{6}}{5}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
A=\frac{-23\sqrt{7}+28\sqrt{2}-7\sqrt{3}\sqrt{7}+7\sqrt{6}}{5}
Multiply -1 and 7 to get -7.
A=\frac{-23\sqrt{7}+28\sqrt{2}-7\sqrt{21}+7\sqrt{6}}{5}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
A=-\frac{23}{5}\sqrt{7}+\frac{28}{5}\sqrt{2}-\frac{7}{5}\sqrt{21}+\frac{7}{5}\sqrt{6}
Divide each term of -23\sqrt{7}+28\sqrt{2}-7\sqrt{21}+7\sqrt{6} by 5 to get -\frac{23}{5}\sqrt{7}+\frac{28}{5}\sqrt{2}-\frac{7}{5}\sqrt{21}+\frac{7}{5}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}