A = \frac { 5 - a 2 x } { 0,8 }
Solve for A
A=\frac{25-5a_{2}x}{4}
Solve for a_2
\left\{\begin{matrix}a_{2}=\frac{25-4A}{5x}\text{, }&x\neq 0\\a_{2}\in \mathrm{R}\text{, }&A=\frac{25}{4}\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
A=\frac{5}{0,8}+\frac{-a_{2}x}{0,8}
Divide each term of 5-a_{2}x by 0,8 to get \frac{5}{0,8}+\frac{-a_{2}x}{0,8}.
A=\frac{50}{8}+\frac{-a_{2}x}{0,8}
Expand \frac{5}{0,8} by multiplying both numerator and the denominator by 10.
A=\frac{25}{4}+\frac{-a_{2}x}{0,8}
Reduce the fraction \frac{50}{8} to lowest terms by extracting and canceling out 2.
A=\frac{25}{4}-1,25a_{2}x
Divide -a_{2}x by 0,8 to get -1,25a_{2}x.
A=\frac{5}{0,8}+\frac{-a_{2}x}{0,8}
Divide each term of 5-a_{2}x by 0,8 to get \frac{5}{0,8}+\frac{-a_{2}x}{0,8}.
A=\frac{50}{8}+\frac{-a_{2}x}{0,8}
Expand \frac{5}{0,8} by multiplying both numerator and the denominator by 10.
A=\frac{25}{4}+\frac{-a_{2}x}{0,8}
Reduce the fraction \frac{50}{8} to lowest terms by extracting and canceling out 2.
A=\frac{25}{4}-1,25a_{2}x
Divide -a_{2}x by 0,8 to get -1,25a_{2}x.
\frac{25}{4}-1,25a_{2}x=A
Swap sides so that all variable terms are on the left hand side.
-1,25a_{2}x=A-\frac{25}{4}
Subtract \frac{25}{4} from both sides.
\left(-\frac{5x}{4}\right)a_{2}=A-\frac{25}{4}
The equation is in standard form.
\frac{\left(-\frac{5x}{4}\right)a_{2}}{-\frac{5x}{4}}=\frac{A-\frac{25}{4}}{-\frac{5x}{4}}
Divide both sides by -1,25x.
a_{2}=\frac{A-\frac{25}{4}}{-\frac{5x}{4}}
Dividing by -1,25x undoes the multiplication by -1,25x.
a_{2}=-\frac{4A-25}{5x}
Divide A-\frac{25}{4} by -1,25x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}