Solve for A
A=\frac{\sqrt{3}}{3}+\frac{2\sqrt{6}}{3}+\sqrt{7}-\sqrt{5}-1\approx 1.620026765
Assign A
A≔\frac{\sqrt{3}}{3}+\frac{2\sqrt{6}}{3}+\sqrt{7}-\sqrt{5}-1
Share
Copied to clipboard
A=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{2}{\sqrt{6}+\sqrt{3}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
A=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{2}{\sqrt{6}+\sqrt{3}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\frac{2\left(\sqrt{3}-1\right)}{3-1}+\frac{2}{\sqrt{6}+\sqrt{3}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Square \sqrt{3}. Square 1.
A=\frac{2\left(\sqrt{3}-1\right)}{2}+\frac{2}{\sqrt{6}+\sqrt{3}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Subtract 1 from 3 to get 2.
A=\sqrt{3}-1+\frac{2}{\sqrt{6}+\sqrt{3}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Cancel out 2 and 2.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}+\frac{2}{\sqrt{7}+\sqrt{5}}
Rationalize the denominator of \frac{2}{\sqrt{6}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{3}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{2}{\sqrt{7}+\sqrt{5}}
Consider \left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{6-3}+\frac{2}{\sqrt{7}+\sqrt{5}}
Square \sqrt{6}. Square \sqrt{3}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\frac{2}{\sqrt{7}+\sqrt{5}}
Subtract 3 from 6 to get 3.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\frac{2\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{\sqrt{7}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{5}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\frac{2\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\frac{2\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
Square \sqrt{7}. Square \sqrt{5}.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\frac{2\left(\sqrt{7}-\sqrt{5}\right)}{2}
Subtract 5 from 7 to get 2.
A=\sqrt{3}-1+\frac{2\left(\sqrt{6}-\sqrt{3}\right)}{3}+\sqrt{7}-\sqrt{5}
Cancel out 2 and 2.
A=\sqrt{3}-1+\frac{2\sqrt{6}-2\sqrt{3}}{3}+\sqrt{7}-\sqrt{5}
Use the distributive property to multiply 2 by \sqrt{6}-\sqrt{3}.
A=\sqrt{3}-1+\frac{2}{3}\sqrt{6}-\frac{2}{3}\sqrt{3}+\sqrt{7}-\sqrt{5}
Divide each term of 2\sqrt{6}-2\sqrt{3} by 3 to get \frac{2}{3}\sqrt{6}-\frac{2}{3}\sqrt{3}.
A=\frac{1}{3}\sqrt{3}-1+\frac{2}{3}\sqrt{6}+\sqrt{7}-\sqrt{5}
Combine \sqrt{3} and -\frac{2}{3}\sqrt{3} to get \frac{1}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}