A = \frac { 15,9 } { \sqrt { 5 } - \sqrt { 3 } } + \frac { 7 } { \sqrt { 5 } + \sqrt { 3 } }
Solve for A
A = \frac{89 \sqrt{3} + 229 \sqrt{5}}{20} \approx 33.310604436
Assign A
A≔\frac{89\sqrt{3}+229\sqrt{5}}{20}
Share
Copied to clipboard
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{7}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{15,9}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{7}{\sqrt{5}+\sqrt{3}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{7}{\sqrt{5}+\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{7}{\sqrt{5}+\sqrt{3}}
Subtract 3 from 5 to get 2.
A=7,95\left(\sqrt{5}+\sqrt{3}\right)+\frac{7}{\sqrt{5}+\sqrt{3}}
Divide 15,9\left(\sqrt{5}+\sqrt{3}\right) by 2 to get 7,95\left(\sqrt{5}+\sqrt{3}\right).
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7}{\sqrt{5}+\sqrt{3}}
Use the distributive property to multiply 7,95 by \sqrt{5}+\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{7}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\sqrt{5}-7\sqrt{3}}{2}
Use the distributive property to multiply 7 by \sqrt{5}-\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7}{2}\sqrt{5}-\frac{7}{2}\sqrt{3}
Divide each term of 7\sqrt{5}-7\sqrt{3} by 2 to get \frac{7}{2}\sqrt{5}-\frac{7}{2}\sqrt{3}.
A=\frac{229}{20}\sqrt{5}+7,95\sqrt{3}-\frac{7}{2}\sqrt{3}
Combine 7,95\sqrt{5} and \frac{7}{2}\sqrt{5} to get \frac{229}{20}\sqrt{5}.
A=\frac{229}{20}\sqrt{5}+\frac{89}{20}\sqrt{3}
Combine 7,95\sqrt{3} and -\frac{7}{2}\sqrt{3} to get \frac{89}{20}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}