Skip to main content
Solve for A
Tick mark Image
Assign A
Tick mark Image

Similar Problems from Web Search

Share

A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{7}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{15,9}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{7}{\sqrt{5}+\sqrt{3}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\frac{7}{\sqrt{5}+\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
A=\frac{15,9\left(\sqrt{5}+\sqrt{3}\right)}{2}+\frac{7}{\sqrt{5}+\sqrt{3}}
Subtract 3 from 5 to get 2.
A=7,95\left(\sqrt{5}+\sqrt{3}\right)+\frac{7}{\sqrt{5}+\sqrt{3}}
Divide 15,9\left(\sqrt{5}+\sqrt{3}\right) by 2 to get 7,95\left(\sqrt{5}+\sqrt{3}\right).
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7}{\sqrt{5}+\sqrt{3}}
Use the distributive property to multiply 7,95 by \sqrt{5}+\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{7}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7\sqrt{5}-7\sqrt{3}}{2}
Use the distributive property to multiply 7 by \sqrt{5}-\sqrt{3}.
A=7,95\sqrt{5}+7,95\sqrt{3}+\frac{7}{2}\sqrt{5}-\frac{7}{2}\sqrt{3}
Divide each term of 7\sqrt{5}-7\sqrt{3} by 2 to get \frac{7}{2}\sqrt{5}-\frac{7}{2}\sqrt{3}.
A=\frac{229}{20}\sqrt{5}+7,95\sqrt{3}-\frac{7}{2}\sqrt{3}
Combine 7,95\sqrt{5} and \frac{7}{2}\sqrt{5} to get \frac{229}{20}\sqrt{5}.
A=\frac{229}{20}\sqrt{5}+\frac{89}{20}\sqrt{3}
Combine 7,95\sqrt{3} and -\frac{7}{2}\sqrt{3} to get \frac{89}{20}\sqrt{3}.