Solve for A
A=-\frac{1}{7}\approx -0.142857143
Assign A
A≔-\frac{1}{7}
Share
Copied to clipboard
A=\frac{1}{2}+\frac{3\times 5}{7\times 6}-1
Multiply \frac{3}{7} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
A=\frac{1}{2}+\frac{15}{42}-1
Do the multiplications in the fraction \frac{3\times 5}{7\times 6}.
A=\frac{1}{2}+\frac{5}{14}-1
Reduce the fraction \frac{15}{42} to lowest terms by extracting and canceling out 3.
A=\frac{7}{14}+\frac{5}{14}-1
Least common multiple of 2 and 14 is 14. Convert \frac{1}{2} and \frac{5}{14} to fractions with denominator 14.
A=\frac{7+5}{14}-1
Since \frac{7}{14} and \frac{5}{14} have the same denominator, add them by adding their numerators.
A=\frac{12}{14}-1
Add 7 and 5 to get 12.
A=\frac{6}{7}-1
Reduce the fraction \frac{12}{14} to lowest terms by extracting and canceling out 2.
A=\frac{6}{7}-\frac{7}{7}
Convert 1 to fraction \frac{7}{7}.
A=\frac{6-7}{7}
Since \frac{6}{7} and \frac{7}{7} have the same denominator, subtract them by subtracting their numerators.
A=-\frac{1}{7}
Subtract 7 from 6 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}