Solve for I
I=-\frac{3\left(8-3A\right)}{4-3A}
A\neq \frac{4}{3}
Solve for A
A=\frac{4\left(I+6\right)}{3\left(I+3\right)}
I\neq -3
Share
Copied to clipboard
A=\frac{1+\frac{1}{1+\frac{I}{3}}}{\frac{1}{\frac{4}{3}}}
Add 1 and \frac{1}{3} to get \frac{4}{3}.
A=\frac{1+\frac{1}{1+\frac{I}{3}}}{1\times \frac{3}{4}}
Divide 1 by \frac{4}{3} by multiplying 1 by the reciprocal of \frac{4}{3}.
A=\frac{1+\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}
Multiply 1 and \frac{3}{4} to get \frac{3}{4}.
A=\frac{1}{\frac{3}{4}}+\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}
Divide each term of 1+\frac{1}{1+\frac{I}{3}} by \frac{3}{4} to get \frac{1}{\frac{3}{4}}+\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}.
A=1\times \frac{4}{3}+\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}
Divide 1 by \frac{3}{4} by multiplying 1 by the reciprocal of \frac{3}{4}.
A=\frac{4}{3}+\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}
Multiply 1 and \frac{4}{3} to get \frac{4}{3}.
\frac{4}{3}+\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}=A
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{1}{1+\frac{I}{3}}}{\frac{3}{4}}=A-\frac{4}{3}
Subtract \frac{4}{3} from both sides.
\frac{1}{\frac{3}{4}\left(\frac{I}{3}+1\right)}=A-\frac{4}{3}
Reorder the terms.
\frac{1}{\frac{3}{4}\times \frac{I}{3}+\frac{3}{4}}=A-\frac{4}{3}
Use the distributive property to multiply \frac{3}{4} by \frac{I}{3}+1.
\frac{1}{\frac{3I}{4\times 3}+\frac{3}{4}}=A-\frac{4}{3}
Multiply \frac{3}{4} times \frac{I}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{I}{4}+\frac{3}{4}}=A-\frac{4}{3}
Cancel out 3 in both numerator and denominator.
\frac{1}{\frac{I+3}{4}}=A-\frac{4}{3}
Since \frac{I}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{4}{I+3}=A-\frac{4}{3}
Divide 1 by \frac{I+3}{4} by multiplying 1 by the reciprocal of \frac{I+3}{4}.
3\times 4=3\left(I+3\right)A+3\left(I+3\right)\left(-\frac{4}{3}\right)
Variable I cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 3\left(I+3\right), the least common multiple of I+3,3.
3\times 4=3A\left(I+3\right)-\frac{4}{3}\times 3\left(I+3\right)
Reorder the terms.
12=3A\left(I+3\right)-\frac{4}{3}\times 3\left(I+3\right)
Multiply 3 and 4 to get 12.
12=3AI+9A-\frac{4}{3}\times 3\left(I+3\right)
Use the distributive property to multiply 3A by I+3.
12=3AI+9A-4\left(I+3\right)
Multiply -\frac{4}{3} and 3 to get -4.
12=3AI+9A-4I-12
Use the distributive property to multiply -4 by I+3.
3AI+9A-4I-12=12
Swap sides so that all variable terms are on the left hand side.
3AI-4I-12=12-9A
Subtract 9A from both sides.
3AI-4I=12-9A+12
Add 12 to both sides.
3AI-4I=24-9A
Add 12 and 12 to get 24.
\left(3A-4\right)I=24-9A
Combine all terms containing I.
\frac{\left(3A-4\right)I}{3A-4}=\frac{24-9A}{3A-4}
Divide both sides by 3A-4.
I=\frac{24-9A}{3A-4}
Dividing by 3A-4 undoes the multiplication by 3A-4.
I=\frac{3\left(8-3A\right)}{3A-4}
Divide 24-9A by 3A-4.
I=\frac{3\left(8-3A\right)}{3A-4}\text{, }I\neq -3
Variable I cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}