Solve for A
A = \frac{11}{4} = 2\frac{3}{4} = 2.75
Assign A
A≔\frac{11}{4}
Share
Copied to clipboard
A=\frac{\frac{25}{20}+\frac{8}{20}}{2-\frac{7}{5}}
Least common multiple of 4 and 5 is 20. Convert \frac{5}{4} and \frac{2}{5} to fractions with denominator 20.
A=\frac{\frac{25+8}{20}}{2-\frac{7}{5}}
Since \frac{25}{20} and \frac{8}{20} have the same denominator, add them by adding their numerators.
A=\frac{\frac{33}{20}}{2-\frac{7}{5}}
Add 25 and 8 to get 33.
A=\frac{\frac{33}{20}}{\frac{10}{5}-\frac{7}{5}}
Convert 2 to fraction \frac{10}{5}.
A=\frac{\frac{33}{20}}{\frac{10-7}{5}}
Since \frac{10}{5} and \frac{7}{5} have the same denominator, subtract them by subtracting their numerators.
A=\frac{\frac{33}{20}}{\frac{3}{5}}
Subtract 7 from 10 to get 3.
A=\frac{33}{20}\times \frac{5}{3}
Divide \frac{33}{20} by \frac{3}{5} by multiplying \frac{33}{20} by the reciprocal of \frac{3}{5}.
A=\frac{33\times 5}{20\times 3}
Multiply \frac{33}{20} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
A=\frac{165}{60}
Do the multiplications in the fraction \frac{33\times 5}{20\times 3}.
A=\frac{11}{4}
Reduce the fraction \frac{165}{60} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}