Skip to main content
Solve for A
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

3\times \frac{A}{b+4}=5\times \frac{A-1}{b-1}
Multiply both sides of the equation by 15, the least common multiple of 5,3.
\frac{3A}{b+4}=5\times \frac{A-1}{b-1}
Express 3\times \frac{A}{b+4} as a single fraction.
\frac{3A}{b+4}=\frac{5\left(A-1\right)}{b-1}
Express 5\times \frac{A-1}{b-1} as a single fraction.
\frac{3A}{b+4}=\frac{5A-5}{b-1}
Use the distributive property to multiply 5 by A-1.
\frac{3A}{b+4}-\frac{5A-5}{b-1}=0
Subtract \frac{5A-5}{b-1} from both sides.
\frac{3A\left(b-1\right)}{\left(b-1\right)\left(b+4\right)}-\frac{\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+4 and b-1 is \left(b-1\right)\left(b+4\right). Multiply \frac{3A}{b+4} times \frac{b-1}{b-1}. Multiply \frac{5A-5}{b-1} times \frac{b+4}{b+4}.
\frac{3A\left(b-1\right)-\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)}=0
Since \frac{3A\left(b-1\right)}{\left(b-1\right)\left(b+4\right)} and \frac{\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3Ab-3A-5Ab-20A+5b+20}{\left(b-1\right)\left(b+4\right)}=0
Do the multiplications in 3A\left(b-1\right)-\left(5A-5\right)\left(b+4\right).
\frac{-2Ab-23A+5b+20}{\left(b-1\right)\left(b+4\right)}=0
Combine like terms in 3Ab-3A-5Ab-20A+5b+20.
-2Ab-23A+5b+20=0
Multiply both sides of the equation by \left(b-1\right)\left(b+4\right).
-2Ab-23A+20=-5b
Subtract 5b from both sides. Anything subtracted from zero gives its negation.
-2Ab-23A=-5b-20
Subtract 20 from both sides.
\left(-2b-23\right)A=-5b-20
Combine all terms containing A.
\frac{\left(-2b-23\right)A}{-2b-23}=\frac{-5b-20}{-2b-23}
Divide both sides by -2b-23.
A=\frac{-5b-20}{-2b-23}
Dividing by -2b-23 undoes the multiplication by -2b-23.
A=\frac{5\left(b+4\right)}{2b+23}
Divide -5b-20 by -2b-23.
3\times \frac{A}{b+4}=5\times \frac{A-1}{b-1}
Multiply both sides of the equation by 15, the least common multiple of 5,3.
\frac{3A}{b+4}=5\times \frac{A-1}{b-1}
Express 3\times \frac{A}{b+4} as a single fraction.
\frac{3A}{b+4}=\frac{5\left(A-1\right)}{b-1}
Express 5\times \frac{A-1}{b-1} as a single fraction.
\frac{3A}{b+4}=\frac{5A-5}{b-1}
Use the distributive property to multiply 5 by A-1.
\frac{3A}{b+4}-\frac{5A-5}{b-1}=0
Subtract \frac{5A-5}{b-1} from both sides.
\frac{3A\left(b-1\right)}{\left(b-1\right)\left(b+4\right)}-\frac{\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+4 and b-1 is \left(b-1\right)\left(b+4\right). Multiply \frac{3A}{b+4} times \frac{b-1}{b-1}. Multiply \frac{5A-5}{b-1} times \frac{b+4}{b+4}.
\frac{3A\left(b-1\right)-\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)}=0
Since \frac{3A\left(b-1\right)}{\left(b-1\right)\left(b+4\right)} and \frac{\left(5A-5\right)\left(b+4\right)}{\left(b-1\right)\left(b+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3Ab-3A-5Ab-20A+5b+20}{\left(b-1\right)\left(b+4\right)}=0
Do the multiplications in 3A\left(b-1\right)-\left(5A-5\right)\left(b+4\right).
\frac{-2Ab-23A+5b+20}{\left(b-1\right)\left(b+4\right)}=0
Combine like terms in 3Ab-3A-5Ab-20A+5b+20.
-2Ab-23A+5b+20=0
Variable b cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(b-1\right)\left(b+4\right).
-2Ab+5b+20=23A
Add 23A to both sides. Anything plus zero gives itself.
-2Ab+5b=23A-20
Subtract 20 from both sides.
\left(-2A+5\right)b=23A-20
Combine all terms containing b.
\left(5-2A\right)b=23A-20
The equation is in standard form.
\frac{\left(5-2A\right)b}{5-2A}=\frac{23A-20}{5-2A}
Divide both sides by -2A+5.
b=\frac{23A-20}{5-2A}
Dividing by -2A+5 undoes the multiplication by -2A+5.
b=\frac{23A-20}{5-2A}\text{, }b\neq -4\text{ and }b\neq 1
Variable b cannot be equal to any of the values -4,1.