Solve for A
A=90-12Db
Solve for D
\left\{\begin{matrix}D=-\frac{A-90}{12b}\text{, }&b\neq 0\\D\in \mathrm{R}\text{, }&A=90\text{ and }b=0\end{matrix}\right.
Share
Copied to clipboard
A+12Db=90
Multiply 4 and 3 to get 12.
A=90-12Db
Subtract 12Db from both sides.
A+12Db=90
Multiply 4 and 3 to get 12.
12Db=90-A
Subtract A from both sides.
12bD=90-A
The equation is in standard form.
\frac{12bD}{12b}=\frac{90-A}{12b}
Divide both sides by 12b.
D=\frac{90-A}{12b}
Dividing by 12b undoes the multiplication by 12b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}