Solve for z
z=\frac{7}{9}+\frac{11}{3x}+\frac{13}{x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{3\left(3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{; }x=\frac{3\left(-3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{, }&z\neq \frac{7}{9}\\x=-\frac{39}{11}\approx -3.545454545\text{, }&z=\frac{7}{9}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{3\left(3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{; }x=\frac{3\left(-3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{, }&z\neq \frac{7}{9}\text{ and }z\geq \frac{27}{52}\\x=-\frac{39}{11}\approx -3.545454545\text{, }&z=\frac{7}{9}\end{matrix}\right.
Share
Copied to clipboard
9zx^{2}-33x-117=7x^{2}
Add 7x^{2} to both sides. Anything plus zero gives itself.
9zx^{2}-117=7x^{2}+33x
Add 33x to both sides.
9zx^{2}=7x^{2}+33x+117
Add 117 to both sides.
9x^{2}z=7x^{2}+33x+117
The equation is in standard form.
\frac{9x^{2}z}{9x^{2}}=\frac{7x^{2}+33x+117}{9x^{2}}
Divide both sides by 9x^{2}.
z=\frac{7x^{2}+33x+117}{9x^{2}}
Dividing by 9x^{2} undoes the multiplication by 9x^{2}.
z=\frac{7}{9}+\frac{\frac{11x}{3}+13}{x^{2}}
Divide 7x^{2}+33x+117 by 9x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}