Solve for x
x=\frac{\sqrt{29}+5}{18}\approx 0.5769536
x=\frac{5-\sqrt{29}}{18}\approx -0.021398045
Graph
Share
Copied to clipboard
\left(9x+2\right)^{2}=\left(\sqrt{81x+5}\right)^{2}
Square both sides of the equation.
81x^{2}+36x+4=\left(\sqrt{81x+5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9x+2\right)^{2}.
81x^{2}+36x+4=81x+5
Calculate \sqrt{81x+5} to the power of 2 and get 81x+5.
81x^{2}+36x+4-81x=5
Subtract 81x from both sides.
81x^{2}-45x+4=5
Combine 36x and -81x to get -45x.
81x^{2}-45x+4-5=0
Subtract 5 from both sides.
81x^{2}-45x-1=0
Subtract 5 from 4 to get -1.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\times 81\left(-1\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, -45 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\times 81\left(-1\right)}}{2\times 81}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025-324\left(-1\right)}}{2\times 81}
Multiply -4 times 81.
x=\frac{-\left(-45\right)±\sqrt{2025+324}}{2\times 81}
Multiply -324 times -1.
x=\frac{-\left(-45\right)±\sqrt{2349}}{2\times 81}
Add 2025 to 324.
x=\frac{-\left(-45\right)±9\sqrt{29}}{2\times 81}
Take the square root of 2349.
x=\frac{45±9\sqrt{29}}{2\times 81}
The opposite of -45 is 45.
x=\frac{45±9\sqrt{29}}{162}
Multiply 2 times 81.
x=\frac{9\sqrt{29}+45}{162}
Now solve the equation x=\frac{45±9\sqrt{29}}{162} when ± is plus. Add 45 to 9\sqrt{29}.
x=\frac{\sqrt{29}+5}{18}
Divide 45+9\sqrt{29} by 162.
x=\frac{45-9\sqrt{29}}{162}
Now solve the equation x=\frac{45±9\sqrt{29}}{162} when ± is minus. Subtract 9\sqrt{29} from 45.
x=\frac{5-\sqrt{29}}{18}
Divide 45-9\sqrt{29} by 162.
x=\frac{\sqrt{29}+5}{18} x=\frac{5-\sqrt{29}}{18}
The equation is now solved.
9\times \frac{\sqrt{29}+5}{18}+2=\sqrt{81\times \frac{\sqrt{29}+5}{18}+5}
Substitute \frac{\sqrt{29}+5}{18} for x in the equation 9x+2=\sqrt{81x+5}.
\frac{1}{2}\times 29^{\frac{1}{2}}+\frac{9}{2}=\frac{9}{2}+\frac{1}{2}\times 29^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{29}+5}{18} satisfies the equation.
9\times \frac{5-\sqrt{29}}{18}+2=\sqrt{81\times \frac{5-\sqrt{29}}{18}+5}
Substitute \frac{5-\sqrt{29}}{18} for x in the equation 9x+2=\sqrt{81x+5}.
\frac{9}{2}-\frac{1}{2}\times 29^{\frac{1}{2}}=\frac{9}{2}-\frac{1}{2}\times 29^{\frac{1}{2}}
Simplify. The value x=\frac{5-\sqrt{29}}{18} satisfies the equation.
x=\frac{\sqrt{29}+5}{18} x=\frac{5-\sqrt{29}}{18}
List all solutions of 9x+2=\sqrt{81x+5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}