Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+13=69
Multiply x and x to get x^{2}.
9x^{2}=69-13
Subtract 13 from both sides.
9x^{2}=56
Subtract 13 from 69 to get 56.
x^{2}=\frac{56}{9}
Divide both sides by 9.
x=\frac{2\sqrt{14}}{3} x=-\frac{2\sqrt{14}}{3}
Take the square root of both sides of the equation.
9x^{2}+13=69
Multiply x and x to get x^{2}.
9x^{2}+13-69=0
Subtract 69 from both sides.
9x^{2}-56=0
Subtract 69 from 13 to get -56.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-56\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-56\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-56\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{2016}}{2\times 9}
Multiply -36 times -56.
x=\frac{0±12\sqrt{14}}{2\times 9}
Take the square root of 2016.
x=\frac{0±12\sqrt{14}}{18}
Multiply 2 times 9.
x=\frac{2\sqrt{14}}{3}
Now solve the equation x=\frac{0±12\sqrt{14}}{18} when ± is plus.
x=-\frac{2\sqrt{14}}{3}
Now solve the equation x=\frac{0±12\sqrt{14}}{18} when ± is minus.
x=\frac{2\sqrt{14}}{3} x=-\frac{2\sqrt{14}}{3}
The equation is now solved.