Solve for x (complex solution)
x=\frac{5\sqrt{2}i}{36}+\frac{1}{3}\approx 0.333333333+0.19641855i
x=-\frac{5\sqrt{2}i}{36}+\frac{1}{3}\approx 0.333333333-0.19641855i
Graph
Share
Copied to clipboard
18x-27x^{2}=\frac{1}{2}+\frac{3}{8}+\frac{4}{6}+\frac{5}{2}
Use the distributive property to multiply 9x by 2-3x.
18x-27x^{2}=\frac{4}{8}+\frac{3}{8}+\frac{4}{6}+\frac{5}{2}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{3}{8} to fractions with denominator 8.
18x-27x^{2}=\frac{4+3}{8}+\frac{4}{6}+\frac{5}{2}
Since \frac{4}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{7}{8}+\frac{4}{6}+\frac{5}{2}
Add 4 and 3 to get 7.
18x-27x^{2}=\frac{7}{8}+\frac{2}{3}+\frac{5}{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
18x-27x^{2}=\frac{21}{24}+\frac{16}{24}+\frac{5}{2}
Least common multiple of 8 and 3 is 24. Convert \frac{7}{8} and \frac{2}{3} to fractions with denominator 24.
18x-27x^{2}=\frac{21+16}{24}+\frac{5}{2}
Since \frac{21}{24} and \frac{16}{24} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{37}{24}+\frac{5}{2}
Add 21 and 16 to get 37.
18x-27x^{2}=\frac{37}{24}+\frac{60}{24}
Least common multiple of 24 and 2 is 24. Convert \frac{37}{24} and \frac{5}{2} to fractions with denominator 24.
18x-27x^{2}=\frac{37+60}{24}
Since \frac{37}{24} and \frac{60}{24} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{97}{24}
Add 37 and 60 to get 97.
18x-27x^{2}-\frac{97}{24}=0
Subtract \frac{97}{24} from both sides.
-27x^{2}+18x-\frac{97}{24}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\left(-27\right)\left(-\frac{97}{24}\right)}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 18 for b, and -\frac{97}{24} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-27\right)\left(-\frac{97}{24}\right)}}{2\left(-27\right)}
Square 18.
x=\frac{-18±\sqrt{324+108\left(-\frac{97}{24}\right)}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{-18±\sqrt{324-\frac{873}{2}}}{2\left(-27\right)}
Multiply 108 times -\frac{97}{24}.
x=\frac{-18±\sqrt{-\frac{225}{2}}}{2\left(-27\right)}
Add 324 to -\frac{873}{2}.
x=\frac{-18±\frac{15\sqrt{2}i}{2}}{2\left(-27\right)}
Take the square root of -\frac{225}{2}.
x=\frac{-18±\frac{15\sqrt{2}i}{2}}{-54}
Multiply 2 times -27.
x=\frac{\frac{15\sqrt{2}i}{2}-18}{-54}
Now solve the equation x=\frac{-18±\frac{15\sqrt{2}i}{2}}{-54} when ± is plus. Add -18 to \frac{15i\sqrt{2}}{2}.
x=-\frac{5\sqrt{2}i}{36}+\frac{1}{3}
Divide -18+\frac{15i\sqrt{2}}{2} by -54.
x=\frac{-\frac{15\sqrt{2}i}{2}-18}{-54}
Now solve the equation x=\frac{-18±\frac{15\sqrt{2}i}{2}}{-54} when ± is minus. Subtract \frac{15i\sqrt{2}}{2} from -18.
x=\frac{5\sqrt{2}i}{36}+\frac{1}{3}
Divide -18-\frac{15i\sqrt{2}}{2} by -54.
x=-\frac{5\sqrt{2}i}{36}+\frac{1}{3} x=\frac{5\sqrt{2}i}{36}+\frac{1}{3}
The equation is now solved.
18x-27x^{2}=\frac{1}{2}+\frac{3}{8}+\frac{4}{6}+\frac{5}{2}
Use the distributive property to multiply 9x by 2-3x.
18x-27x^{2}=\frac{4}{8}+\frac{3}{8}+\frac{4}{6}+\frac{5}{2}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{3}{8} to fractions with denominator 8.
18x-27x^{2}=\frac{4+3}{8}+\frac{4}{6}+\frac{5}{2}
Since \frac{4}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{7}{8}+\frac{4}{6}+\frac{5}{2}
Add 4 and 3 to get 7.
18x-27x^{2}=\frac{7}{8}+\frac{2}{3}+\frac{5}{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
18x-27x^{2}=\frac{21}{24}+\frac{16}{24}+\frac{5}{2}
Least common multiple of 8 and 3 is 24. Convert \frac{7}{8} and \frac{2}{3} to fractions with denominator 24.
18x-27x^{2}=\frac{21+16}{24}+\frac{5}{2}
Since \frac{21}{24} and \frac{16}{24} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{37}{24}+\frac{5}{2}
Add 21 and 16 to get 37.
18x-27x^{2}=\frac{37}{24}+\frac{60}{24}
Least common multiple of 24 and 2 is 24. Convert \frac{37}{24} and \frac{5}{2} to fractions with denominator 24.
18x-27x^{2}=\frac{37+60}{24}
Since \frac{37}{24} and \frac{60}{24} have the same denominator, add them by adding their numerators.
18x-27x^{2}=\frac{97}{24}
Add 37 and 60 to get 97.
-27x^{2}+18x=\frac{97}{24}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-27x^{2}+18x}{-27}=\frac{\frac{97}{24}}{-27}
Divide both sides by -27.
x^{2}+\frac{18}{-27}x=\frac{\frac{97}{24}}{-27}
Dividing by -27 undoes the multiplication by -27.
x^{2}-\frac{2}{3}x=\frac{\frac{97}{24}}{-27}
Reduce the fraction \frac{18}{-27} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{2}{3}x=-\frac{97}{648}
Divide \frac{97}{24} by -27.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{97}{648}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{97}{648}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{25}{648}
Add -\frac{97}{648} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{25}{648}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{25}{648}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{5\sqrt{2}i}{36} x-\frac{1}{3}=-\frac{5\sqrt{2}i}{36}
Simplify.
x=\frac{5\sqrt{2}i}{36}+\frac{1}{3} x=-\frac{5\sqrt{2}i}{36}+\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}