Solve for a
a=-\frac{4dn}{9}-2
Solve for d
\left\{\begin{matrix}d=-\frac{9\left(a+2\right)}{4n}\text{, }&n\neq 0\\d\in \mathrm{R}\text{, }&a=-2\text{ and }n=0\end{matrix}\right.
Share
Copied to clipboard
18a+n\left(9-1\right)d=-36
Multiply both sides of the equation by 2.
18a+n\times 8d=-36
Subtract 1 from 9 to get 8.
18a=-36-n\times 8d
Subtract n\times 8d from both sides.
18a=-36-8nd
Multiply -1 and 8 to get -8.
18a=-8dn-36
The equation is in standard form.
\frac{18a}{18}=\frac{-8dn-36}{18}
Divide both sides by 18.
a=\frac{-8dn-36}{18}
Dividing by 18 undoes the multiplication by 18.
a=-\frac{4dn}{9}-2
Divide -36-8nd by 18.
18a+n\left(9-1\right)d=-36
Multiply both sides of the equation by 2.
18a+n\times 8d=-36
Subtract 1 from 9 to get 8.
n\times 8d=-36-18a
Subtract 18a from both sides.
8nd=-18a-36
The equation is in standard form.
\frac{8nd}{8n}=\frac{-18a-36}{8n}
Divide both sides by 8n.
d=\frac{-18a-36}{8n}
Dividing by 8n undoes the multiplication by 8n.
d=-\frac{9\left(a+2\right)}{4n}
Divide -36-18a by 8n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}