Evaluate
\frac{33333}{5}=6666.6
Factor
\frac{3 \cdot 41 \cdot 271}{5} = 6666\frac{3}{5} = 6666.6
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)99999}\\\end{array}
Use the 1^{st} digit 9 from dividend 99999
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)99999}\\\end{array}
Since 9 is less than 15, use the next digit 9 from dividend 99999 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)99999}\\\end{array}
Use the 2^{nd} digit 9 from dividend 99999
\begin{array}{l}\phantom{15)}06\phantom{4}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}9\\\end{array}
Find closest multiple of 15 to 99. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 6 to quotient.
\begin{array}{l}\phantom{15)}06\phantom{5}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\end{array}
Use the 3^{rd} digit 9 from dividend 99999
\begin{array}{l}\phantom{15)}066\phantom{6}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}9\\\end{array}
Find closest multiple of 15 to 99. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 6 to quotient.
\begin{array}{l}\phantom{15)}066\phantom{7}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}99\\\end{array}
Use the 4^{th} digit 9 from dividend 99999
\begin{array}{l}\phantom{15)}0666\phantom{8}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}99\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)999}9\\\end{array}
Find closest multiple of 15 to 99. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 6 to quotient.
\begin{array}{l}\phantom{15)}0666\phantom{9}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}99\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)999}99\\\end{array}
Use the 5^{th} digit 9 from dividend 99999
\begin{array}{l}\phantom{15)}06666\phantom{10}\\15\overline{)99999}\\\phantom{15)}\underline{\phantom{}90\phantom{999}}\\\phantom{15)9}99\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}99\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)999}99\\\phantom{15)}\underline{\phantom{999}90\phantom{}}\\\phantom{15)9999}9\\\end{array}
Find closest multiple of 15 to 99. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 99 to get reminder 9. Add 6 to quotient.
\text{Quotient: }6666 \text{Reminder: }9
Since 9 is less than 15, stop the division. The reminder is 9. The topmost line 06666 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6666.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}