Evaluate
\frac{999}{28}\approx 35.678571429
Factor
\frac{3 ^ {3} \cdot 37}{2 ^ {2} \cdot 7} = 35\frac{19}{28} = 35.67857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)999}\\\end{array}
Use the 1^{st} digit 9 from dividend 999
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)999}\\\end{array}
Since 9 is less than 28, use the next digit 9 from dividend 999 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)999}\\\end{array}
Use the 2^{nd} digit 9 from dividend 999
\begin{array}{l}\phantom{28)}03\phantom{4}\\28\overline{)999}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}15\\\end{array}
Find closest multiple of 28 to 99. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 99 to get reminder 15. Add 3 to quotient.
\begin{array}{l}\phantom{28)}03\phantom{5}\\28\overline{)999}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}159\\\end{array}
Use the 3^{rd} digit 9 from dividend 999
\begin{array}{l}\phantom{28)}035\phantom{6}\\28\overline{)999}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}159\\\phantom{28)}\underline{\phantom{}140\phantom{}}\\\phantom{28)9}19\\\end{array}
Find closest multiple of 28 to 159. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 159 to get reminder 19. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }19
Since 19 is less than 28, stop the division. The reminder is 19. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}