Evaluate
\frac{499}{14}\approx 35.642857143
Factor
\frac{499}{2 \cdot 7} = 35\frac{9}{14} = 35.642857142857146
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)998}\\\end{array}
Use the 1^{st} digit 9 from dividend 998
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)998}\\\end{array}
Since 9 is less than 28, use the next digit 9 from dividend 998 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)998}\\\end{array}
Use the 2^{nd} digit 9 from dividend 998
\begin{array}{l}\phantom{28)}03\phantom{4}\\28\overline{)998}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}15\\\end{array}
Find closest multiple of 28 to 99. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 99 to get reminder 15. Add 3 to quotient.
\begin{array}{l}\phantom{28)}03\phantom{5}\\28\overline{)998}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}158\\\end{array}
Use the 3^{rd} digit 8 from dividend 998
\begin{array}{l}\phantom{28)}035\phantom{6}\\28\overline{)998}\\\phantom{28)}\underline{\phantom{}84\phantom{9}}\\\phantom{28)}158\\\phantom{28)}\underline{\phantom{}140\phantom{}}\\\phantom{28)9}18\\\end{array}
Find closest multiple of 28 to 158. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 158 to get reminder 18. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }18
Since 18 is less than 28, stop the division. The reminder is 18. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}