Evaluate
\frac{992}{83}\approx 11.951807229
Factor
\frac{2 ^ {5} \cdot 31}{83} = 11\frac{79}{83} = 11.951807228915662
Share
Copied to clipboard
\begin{array}{l}\phantom{83)}\phantom{1}\\83\overline{)992}\\\end{array}
Use the 1^{st} digit 9 from dividend 992
\begin{array}{l}\phantom{83)}0\phantom{2}\\83\overline{)992}\\\end{array}
Since 9 is less than 83, use the next digit 9 from dividend 992 and add 0 to the quotient
\begin{array}{l}\phantom{83)}0\phantom{3}\\83\overline{)992}\\\end{array}
Use the 2^{nd} digit 9 from dividend 992
\begin{array}{l}\phantom{83)}01\phantom{4}\\83\overline{)992}\\\phantom{83)}\underline{\phantom{}83\phantom{9}}\\\phantom{83)}16\\\end{array}
Find closest multiple of 83 to 99. We see that 1 \times 83 = 83 is the nearest. Now subtract 83 from 99 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{83)}01\phantom{5}\\83\overline{)992}\\\phantom{83)}\underline{\phantom{}83\phantom{9}}\\\phantom{83)}162\\\end{array}
Use the 3^{rd} digit 2 from dividend 992
\begin{array}{l}\phantom{83)}011\phantom{6}\\83\overline{)992}\\\phantom{83)}\underline{\phantom{}83\phantom{9}}\\\phantom{83)}162\\\phantom{83)}\underline{\phantom{9}83\phantom{}}\\\phantom{83)9}79\\\end{array}
Find closest multiple of 83 to 162. We see that 1 \times 83 = 83 is the nearest. Now subtract 83 from 162 to get reminder 79. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }79
Since 79 is less than 83, stop the division. The reminder is 79. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}