Evaluate
\frac{991}{365}\approx 2.715068493
Factor
\frac{991}{5 \cdot 73} = 2\frac{261}{365} = 2.7150684931506848
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)991}\\\end{array}
Use the 1^{st} digit 9 from dividend 991
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)991}\\\end{array}
Since 9 is less than 365, use the next digit 9 from dividend 991 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)991}\\\end{array}
Use the 2^{nd} digit 9 from dividend 991
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)991}\\\end{array}
Since 99 is less than 365, use the next digit 1 from dividend 991 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)991}\\\end{array}
Use the 3^{rd} digit 1 from dividend 991
\begin{array}{l}\phantom{365)}002\phantom{6}\\365\overline{)991}\\\phantom{365)}\underline{\phantom{}730\phantom{}}\\\phantom{365)}261\\\end{array}
Find closest multiple of 365 to 991. We see that 2 \times 365 = 730 is the nearest. Now subtract 730 from 991 to get reminder 261. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }261
Since 261 is less than 365, stop the division. The reminder is 261. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}