Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

99x^{2}+675x-\frac{17775}{16}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-675±\sqrt{675^{2}-4\times 99\left(-\frac{17775}{16}\right)}}{2\times 99}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 99 for a, 675 for b, and -\frac{17775}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-675±\sqrt{455625-4\times 99\left(-\frac{17775}{16}\right)}}{2\times 99}
Square 675.
x=\frac{-675±\sqrt{455625-396\left(-\frac{17775}{16}\right)}}{2\times 99}
Multiply -4 times 99.
x=\frac{-675±\sqrt{455625+\frac{1759725}{4}}}{2\times 99}
Multiply -396 times -\frac{17775}{16}.
x=\frac{-675±\sqrt{\frac{3582225}{4}}}{2\times 99}
Add 455625 to \frac{1759725}{4}.
x=\frac{-675±\frac{45\sqrt{1769}}{2}}{2\times 99}
Take the square root of \frac{3582225}{4}.
x=\frac{-675±\frac{45\sqrt{1769}}{2}}{198}
Multiply 2 times 99.
x=\frac{\frac{45\sqrt{1769}}{2}-675}{198}
Now solve the equation x=\frac{-675±\frac{45\sqrt{1769}}{2}}{198} when ± is plus. Add -675 to \frac{45\sqrt{1769}}{2}.
x=\frac{5\sqrt{1769}}{44}-\frac{75}{22}
Divide -675+\frac{45\sqrt{1769}}{2} by 198.
x=\frac{-\frac{45\sqrt{1769}}{2}-675}{198}
Now solve the equation x=\frac{-675±\frac{45\sqrt{1769}}{2}}{198} when ± is minus. Subtract \frac{45\sqrt{1769}}{2} from -675.
x=-\frac{5\sqrt{1769}}{44}-\frac{75}{22}
Divide -675-\frac{45\sqrt{1769}}{2} by 198.
x=\frac{5\sqrt{1769}}{44}-\frac{75}{22} x=-\frac{5\sqrt{1769}}{44}-\frac{75}{22}
The equation is now solved.
99x^{2}+675x-\frac{17775}{16}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
99x^{2}+675x-\frac{17775}{16}-\left(-\frac{17775}{16}\right)=-\left(-\frac{17775}{16}\right)
Add \frac{17775}{16} to both sides of the equation.
99x^{2}+675x=-\left(-\frac{17775}{16}\right)
Subtracting -\frac{17775}{16} from itself leaves 0.
99x^{2}+675x=\frac{17775}{16}
Subtract -\frac{17775}{16} from 0.
\frac{99x^{2}+675x}{99}=\frac{\frac{17775}{16}}{99}
Divide both sides by 99.
x^{2}+\frac{675}{99}x=\frac{\frac{17775}{16}}{99}
Dividing by 99 undoes the multiplication by 99.
x^{2}+\frac{75}{11}x=\frac{\frac{17775}{16}}{99}
Reduce the fraction \frac{675}{99} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{75}{11}x=\frac{1975}{176}
Divide \frac{17775}{16} by 99.
x^{2}+\frac{75}{11}x+\left(\frac{75}{22}\right)^{2}=\frac{1975}{176}+\left(\frac{75}{22}\right)^{2}
Divide \frac{75}{11}, the coefficient of the x term, by 2 to get \frac{75}{22}. Then add the square of \frac{75}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{75}{11}x+\frac{5625}{484}=\frac{1975}{176}+\frac{5625}{484}
Square \frac{75}{22} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{75}{11}x+\frac{5625}{484}=\frac{44225}{1936}
Add \frac{1975}{176} to \frac{5625}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{75}{22}\right)^{2}=\frac{44225}{1936}
Factor x^{2}+\frac{75}{11}x+\frac{5625}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{75}{22}\right)^{2}}=\sqrt{\frac{44225}{1936}}
Take the square root of both sides of the equation.
x+\frac{75}{22}=\frac{5\sqrt{1769}}{44} x+\frac{75}{22}=-\frac{5\sqrt{1769}}{44}
Simplify.
x=\frac{5\sqrt{1769}}{44}-\frac{75}{22} x=-\frac{5\sqrt{1769}}{44}-\frac{75}{22}
Subtract \frac{75}{22} from both sides of the equation.