Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

99\lambda ^{2}+42\lambda -7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-42±\sqrt{42^{2}-4\times 99\left(-7\right)}}{2\times 99}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 99 for a, 42 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-42±\sqrt{1764-4\times 99\left(-7\right)}}{2\times 99}
Square 42.
\lambda =\frac{-42±\sqrt{1764-396\left(-7\right)}}{2\times 99}
Multiply -4 times 99.
\lambda =\frac{-42±\sqrt{1764+2772}}{2\times 99}
Multiply -396 times -7.
\lambda =\frac{-42±\sqrt{4536}}{2\times 99}
Add 1764 to 2772.
\lambda =\frac{-42±18\sqrt{14}}{2\times 99}
Take the square root of 4536.
\lambda =\frac{-42±18\sqrt{14}}{198}
Multiply 2 times 99.
\lambda =\frac{18\sqrt{14}-42}{198}
Now solve the equation \lambda =\frac{-42±18\sqrt{14}}{198} when ± is plus. Add -42 to 18\sqrt{14}.
\lambda =\frac{\sqrt{14}}{11}-\frac{7}{33}
Divide -42+18\sqrt{14} by 198.
\lambda =\frac{-18\sqrt{14}-42}{198}
Now solve the equation \lambda =\frac{-42±18\sqrt{14}}{198} when ± is minus. Subtract 18\sqrt{14} from -42.
\lambda =-\frac{\sqrt{14}}{11}-\frac{7}{33}
Divide -42-18\sqrt{14} by 198.
\lambda =\frac{\sqrt{14}}{11}-\frac{7}{33} \lambda =-\frac{\sqrt{14}}{11}-\frac{7}{33}
The equation is now solved.
99\lambda ^{2}+42\lambda -7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
99\lambda ^{2}+42\lambda -7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
99\lambda ^{2}+42\lambda =-\left(-7\right)
Subtracting -7 from itself leaves 0.
99\lambda ^{2}+42\lambda =7
Subtract -7 from 0.
\frac{99\lambda ^{2}+42\lambda }{99}=\frac{7}{99}
Divide both sides by 99.
\lambda ^{2}+\frac{42}{99}\lambda =\frac{7}{99}
Dividing by 99 undoes the multiplication by 99.
\lambda ^{2}+\frac{14}{33}\lambda =\frac{7}{99}
Reduce the fraction \frac{42}{99} to lowest terms by extracting and canceling out 3.
\lambda ^{2}+\frac{14}{33}\lambda +\left(\frac{7}{33}\right)^{2}=\frac{7}{99}+\left(\frac{7}{33}\right)^{2}
Divide \frac{14}{33}, the coefficient of the x term, by 2 to get \frac{7}{33}. Then add the square of \frac{7}{33} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{14}{33}\lambda +\frac{49}{1089}=\frac{7}{99}+\frac{49}{1089}
Square \frac{7}{33} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{14}{33}\lambda +\frac{49}{1089}=\frac{14}{121}
Add \frac{7}{99} to \frac{49}{1089} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda +\frac{7}{33}\right)^{2}=\frac{14}{121}
Factor \lambda ^{2}+\frac{14}{33}\lambda +\frac{49}{1089}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{7}{33}\right)^{2}}=\sqrt{\frac{14}{121}}
Take the square root of both sides of the equation.
\lambda +\frac{7}{33}=\frac{\sqrt{14}}{11} \lambda +\frac{7}{33}=-\frac{\sqrt{14}}{11}
Simplify.
\lambda =\frac{\sqrt{14}}{11}-\frac{7}{33} \lambda =-\frac{\sqrt{14}}{11}-\frac{7}{33}
Subtract \frac{7}{33} from both sides of the equation.