Evaluate
\frac{99}{41}\approx 2.414634146
Factor
\frac{3 ^ {2} \cdot 11}{41} = 2\frac{17}{41} = 2.4146341463414633
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)99}\\\end{array}
Use the 1^{st} digit 9 from dividend 99
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)99}\\\end{array}
Since 9 is less than 41, use the next digit 9 from dividend 99 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)99}\\\end{array}
Use the 2^{nd} digit 9 from dividend 99
\begin{array}{l}\phantom{41)}02\phantom{4}\\41\overline{)99}\\\phantom{41)}\underline{\phantom{}82\phantom{}}\\\phantom{41)}17\\\end{array}
Find closest multiple of 41 to 99. We see that 2 \times 41 = 82 is the nearest. Now subtract 82 from 99 to get reminder 17. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }17
Since 17 is less than 41, stop the division. The reminder is 17. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}