Evaluate
\frac{109969}{18}\approx 6109.388888889
Factor
\frac{277 \cdot 397}{2 \cdot 3 ^ {2}} = 6109\frac{7}{18} = 6109.388888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{162)}\phantom{1}\\162\overline{)989721}\\\end{array}
Use the 1^{st} digit 9 from dividend 989721
\begin{array}{l}\phantom{162)}0\phantom{2}\\162\overline{)989721}\\\end{array}
Since 9 is less than 162, use the next digit 8 from dividend 989721 and add 0 to the quotient
\begin{array}{l}\phantom{162)}0\phantom{3}\\162\overline{)989721}\\\end{array}
Use the 2^{nd} digit 8 from dividend 989721
\begin{array}{l}\phantom{162)}00\phantom{4}\\162\overline{)989721}\\\end{array}
Since 98 is less than 162, use the next digit 9 from dividend 989721 and add 0 to the quotient
\begin{array}{l}\phantom{162)}00\phantom{5}\\162\overline{)989721}\\\end{array}
Use the 3^{rd} digit 9 from dividend 989721
\begin{array}{l}\phantom{162)}006\phantom{6}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}17\\\end{array}
Find closest multiple of 162 to 989. We see that 6 \times 162 = 972 is the nearest. Now subtract 972 from 989 to get reminder 17. Add 6 to quotient.
\begin{array}{l}\phantom{162)}006\phantom{7}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\end{array}
Use the 4^{th} digit 7 from dividend 989721
\begin{array}{l}\phantom{162)}0061\phantom{8}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\phantom{162)}\underline{\phantom{9}162\phantom{99}}\\\phantom{162)99}15\\\end{array}
Find closest multiple of 162 to 177. We see that 1 \times 162 = 162 is the nearest. Now subtract 162 from 177 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{162)}0061\phantom{9}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\phantom{162)}\underline{\phantom{9}162\phantom{99}}\\\phantom{162)99}152\\\end{array}
Use the 5^{th} digit 2 from dividend 989721
\begin{array}{l}\phantom{162)}00610\phantom{10}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\phantom{162)}\underline{\phantom{9}162\phantom{99}}\\\phantom{162)99}152\\\end{array}
Since 152 is less than 162, use the next digit 1 from dividend 989721 and add 0 to the quotient
\begin{array}{l}\phantom{162)}00610\phantom{11}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\phantom{162)}\underline{\phantom{9}162\phantom{99}}\\\phantom{162)99}1521\\\end{array}
Use the 6^{th} digit 1 from dividend 989721
\begin{array}{l}\phantom{162)}006109\phantom{12}\\162\overline{)989721}\\\phantom{162)}\underline{\phantom{}972\phantom{999}}\\\phantom{162)9}177\\\phantom{162)}\underline{\phantom{9}162\phantom{99}}\\\phantom{162)99}1521\\\phantom{162)}\underline{\phantom{99}1458\phantom{}}\\\phantom{162)9999}63\\\end{array}
Find closest multiple of 162 to 1521. We see that 9 \times 162 = 1458 is the nearest. Now subtract 1458 from 1521 to get reminder 63. Add 9 to quotient.
\text{Quotient: }6109 \text{Reminder: }63
Since 63 is less than 162, stop the division. The reminder is 63. The topmost line 006109 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6109.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}