Evaluate
\frac{616}{3}\approx 205.333333333
Factor
\frac{2 ^ {3} \cdot 7 \cdot 11}{3} = 205\frac{1}{3} = 205.33333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)9856}\\\end{array}
Use the 1^{st} digit 9 from dividend 9856
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)9856}\\\end{array}
Since 9 is less than 48, use the next digit 8 from dividend 9856 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)9856}\\\end{array}
Use the 2^{nd} digit 8 from dividend 9856
\begin{array}{l}\phantom{48)}02\phantom{4}\\48\overline{)9856}\\\phantom{48)}\underline{\phantom{}96\phantom{99}}\\\phantom{48)9}2\\\end{array}
Find closest multiple of 48 to 98. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 98 to get reminder 2. Add 2 to quotient.
\begin{array}{l}\phantom{48)}02\phantom{5}\\48\overline{)9856}\\\phantom{48)}\underline{\phantom{}96\phantom{99}}\\\phantom{48)9}25\\\end{array}
Use the 3^{rd} digit 5 from dividend 9856
\begin{array}{l}\phantom{48)}020\phantom{6}\\48\overline{)9856}\\\phantom{48)}\underline{\phantom{}96\phantom{99}}\\\phantom{48)9}25\\\end{array}
Since 25 is less than 48, use the next digit 6 from dividend 9856 and add 0 to the quotient
\begin{array}{l}\phantom{48)}020\phantom{7}\\48\overline{)9856}\\\phantom{48)}\underline{\phantom{}96\phantom{99}}\\\phantom{48)9}256\\\end{array}
Use the 4^{th} digit 6 from dividend 9856
\begin{array}{l}\phantom{48)}0205\phantom{8}\\48\overline{)9856}\\\phantom{48)}\underline{\phantom{}96\phantom{99}}\\\phantom{48)9}256\\\phantom{48)}\underline{\phantom{9}240\phantom{}}\\\phantom{48)99}16\\\end{array}
Find closest multiple of 48 to 256. We see that 5 \times 48 = 240 is the nearest. Now subtract 240 from 256 to get reminder 16. Add 5 to quotient.
\text{Quotient: }205 \text{Reminder: }16
Since 16 is less than 48, stop the division. The reminder is 16. The topmost line 0205 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 205.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}