Evaluate
\frac{985208}{99}\approx 9951.595959596
Factor
\frac{2 ^ {3} \cdot 7 \cdot 73 \cdot 241}{3 ^ {2} \cdot 11} = 9951\frac{59}{99} = 9951.59595959596
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)985208}\\\end{array}
Use the 1^{st} digit 9 from dividend 985208
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)985208}\\\end{array}
Since 9 is less than 99, use the next digit 8 from dividend 985208 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)985208}\\\end{array}
Use the 2^{nd} digit 8 from dividend 985208
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)985208}\\\end{array}
Since 98 is less than 99, use the next digit 5 from dividend 985208 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)985208}\\\end{array}
Use the 3^{rd} digit 5 from dividend 985208
\begin{array}{l}\phantom{99)}009\phantom{6}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}94\\\end{array}
Find closest multiple of 99 to 985. We see that 9 \times 99 = 891 is the nearest. Now subtract 891 from 985 to get reminder 94. Add 9 to quotient.
\begin{array}{l}\phantom{99)}009\phantom{7}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\end{array}
Use the 4^{th} digit 2 from dividend 985208
\begin{array}{l}\phantom{99)}0099\phantom{8}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\phantom{99)}\underline{\phantom{9}891\phantom{99}}\\\phantom{99)99}51\\\end{array}
Find closest multiple of 99 to 942. We see that 9 \times 99 = 891 is the nearest. Now subtract 891 from 942 to get reminder 51. Add 9 to quotient.
\begin{array}{l}\phantom{99)}0099\phantom{9}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\phantom{99)}\underline{\phantom{9}891\phantom{99}}\\\phantom{99)99}510\\\end{array}
Use the 5^{th} digit 0 from dividend 985208
\begin{array}{l}\phantom{99)}00995\phantom{10}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\phantom{99)}\underline{\phantom{9}891\phantom{99}}\\\phantom{99)99}510\\\phantom{99)}\underline{\phantom{99}495\phantom{9}}\\\phantom{99)999}15\\\end{array}
Find closest multiple of 99 to 510. We see that 5 \times 99 = 495 is the nearest. Now subtract 495 from 510 to get reminder 15. Add 5 to quotient.
\begin{array}{l}\phantom{99)}00995\phantom{11}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\phantom{99)}\underline{\phantom{9}891\phantom{99}}\\\phantom{99)99}510\\\phantom{99)}\underline{\phantom{99}495\phantom{9}}\\\phantom{99)999}158\\\end{array}
Use the 6^{th} digit 8 from dividend 985208
\begin{array}{l}\phantom{99)}009951\phantom{12}\\99\overline{)985208}\\\phantom{99)}\underline{\phantom{}891\phantom{999}}\\\phantom{99)9}942\\\phantom{99)}\underline{\phantom{9}891\phantom{99}}\\\phantom{99)99}510\\\phantom{99)}\underline{\phantom{99}495\phantom{9}}\\\phantom{99)999}158\\\phantom{99)}\underline{\phantom{9999}99\phantom{}}\\\phantom{99)9999}59\\\end{array}
Find closest multiple of 99 to 158. We see that 1 \times 99 = 99 is the nearest. Now subtract 99 from 158 to get reminder 59. Add 1 to quotient.
\text{Quotient: }9951 \text{Reminder: }59
Since 59 is less than 99, stop the division. The reminder is 59. The topmost line 009951 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9951.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}