Evaluate
\frac{13080}{7}\approx 1868.571428571
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5 \cdot 109}{7} = 1868\frac{4}{7} = 1868.5714285714287
Share
Copied to clipboard
\begin{array}{l}\phantom{525)}\phantom{1}\\525\overline{)981000}\\\end{array}
Use the 1^{st} digit 9 from dividend 981000
\begin{array}{l}\phantom{525)}0\phantom{2}\\525\overline{)981000}\\\end{array}
Since 9 is less than 525, use the next digit 8 from dividend 981000 and add 0 to the quotient
\begin{array}{l}\phantom{525)}0\phantom{3}\\525\overline{)981000}\\\end{array}
Use the 2^{nd} digit 8 from dividend 981000
\begin{array}{l}\phantom{525)}00\phantom{4}\\525\overline{)981000}\\\end{array}
Since 98 is less than 525, use the next digit 1 from dividend 981000 and add 0 to the quotient
\begin{array}{l}\phantom{525)}00\phantom{5}\\525\overline{)981000}\\\end{array}
Use the 3^{rd} digit 1 from dividend 981000
\begin{array}{l}\phantom{525)}001\phantom{6}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}456\\\end{array}
Find closest multiple of 525 to 981. We see that 1 \times 525 = 525 is the nearest. Now subtract 525 from 981 to get reminder 456. Add 1 to quotient.
\begin{array}{l}\phantom{525)}001\phantom{7}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\end{array}
Use the 4^{th} digit 0 from dividend 981000
\begin{array}{l}\phantom{525)}0018\phantom{8}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\phantom{525)}\underline{\phantom{}4200\phantom{99}}\\\phantom{525)9}360\\\end{array}
Find closest multiple of 525 to 4560. We see that 8 \times 525 = 4200 is the nearest. Now subtract 4200 from 4560 to get reminder 360. Add 8 to quotient.
\begin{array}{l}\phantom{525)}0018\phantom{9}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\phantom{525)}\underline{\phantom{}4200\phantom{99}}\\\phantom{525)9}3600\\\end{array}
Use the 5^{th} digit 0 from dividend 981000
\begin{array}{l}\phantom{525)}00186\phantom{10}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\phantom{525)}\underline{\phantom{}4200\phantom{99}}\\\phantom{525)9}3600\\\phantom{525)}\underline{\phantom{9}3150\phantom{9}}\\\phantom{525)99}450\\\end{array}
Find closest multiple of 525 to 3600. We see that 6 \times 525 = 3150 is the nearest. Now subtract 3150 from 3600 to get reminder 450. Add 6 to quotient.
\begin{array}{l}\phantom{525)}00186\phantom{11}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\phantom{525)}\underline{\phantom{}4200\phantom{99}}\\\phantom{525)9}3600\\\phantom{525)}\underline{\phantom{9}3150\phantom{9}}\\\phantom{525)99}4500\\\end{array}
Use the 6^{th} digit 0 from dividend 981000
\begin{array}{l}\phantom{525)}001868\phantom{12}\\525\overline{)981000}\\\phantom{525)}\underline{\phantom{}525\phantom{999}}\\\phantom{525)}4560\\\phantom{525)}\underline{\phantom{}4200\phantom{99}}\\\phantom{525)9}3600\\\phantom{525)}\underline{\phantom{9}3150\phantom{9}}\\\phantom{525)99}4500\\\phantom{525)}\underline{\phantom{99}4200\phantom{}}\\\phantom{525)999}300\\\end{array}
Find closest multiple of 525 to 4500. We see that 8 \times 525 = 4200 is the nearest. Now subtract 4200 from 4500 to get reminder 300. Add 8 to quotient.
\text{Quotient: }1868 \text{Reminder: }300
Since 300 is less than 525, stop the division. The reminder is 300. The topmost line 001868 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1868.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}