Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

200n^{2}+9800n=1400
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
200n^{2}+9800n-1400=1400-1400
Subtract 1400 from both sides of the equation.
200n^{2}+9800n-1400=0
Subtracting 1400 from itself leaves 0.
n=\frac{-9800±\sqrt{9800^{2}-4\times 200\left(-1400\right)}}{2\times 200}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 200 for a, 9800 for b, and -1400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-9800±\sqrt{96040000-4\times 200\left(-1400\right)}}{2\times 200}
Square 9800.
n=\frac{-9800±\sqrt{96040000-800\left(-1400\right)}}{2\times 200}
Multiply -4 times 200.
n=\frac{-9800±\sqrt{96040000+1120000}}{2\times 200}
Multiply -800 times -1400.
n=\frac{-9800±\sqrt{97160000}}{2\times 200}
Add 96040000 to 1120000.
n=\frac{-9800±200\sqrt{2429}}{2\times 200}
Take the square root of 97160000.
n=\frac{-9800±200\sqrt{2429}}{400}
Multiply 2 times 200.
n=\frac{200\sqrt{2429}-9800}{400}
Now solve the equation n=\frac{-9800±200\sqrt{2429}}{400} when ± is plus. Add -9800 to 200\sqrt{2429}.
n=\frac{\sqrt{2429}-49}{2}
Divide -9800+200\sqrt{2429} by 400.
n=\frac{-200\sqrt{2429}-9800}{400}
Now solve the equation n=\frac{-9800±200\sqrt{2429}}{400} when ± is minus. Subtract 200\sqrt{2429} from -9800.
n=\frac{-\sqrt{2429}-49}{2}
Divide -9800-200\sqrt{2429} by 400.
n=\frac{\sqrt{2429}-49}{2} n=\frac{-\sqrt{2429}-49}{2}
The equation is now solved.
200n^{2}+9800n=1400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{200n^{2}+9800n}{200}=\frac{1400}{200}
Divide both sides by 200.
n^{2}+\frac{9800}{200}n=\frac{1400}{200}
Dividing by 200 undoes the multiplication by 200.
n^{2}+49n=\frac{1400}{200}
Divide 9800 by 200.
n^{2}+49n=7
Divide 1400 by 200.
n^{2}+49n+\left(\frac{49}{2}\right)^{2}=7+\left(\frac{49}{2}\right)^{2}
Divide 49, the coefficient of the x term, by 2 to get \frac{49}{2}. Then add the square of \frac{49}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+49n+\frac{2401}{4}=7+\frac{2401}{4}
Square \frac{49}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+49n+\frac{2401}{4}=\frac{2429}{4}
Add 7 to \frac{2401}{4}.
\left(n+\frac{49}{2}\right)^{2}=\frac{2429}{4}
Factor n^{2}+49n+\frac{2401}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{49}{2}\right)^{2}}=\sqrt{\frac{2429}{4}}
Take the square root of both sides of the equation.
n+\frac{49}{2}=\frac{\sqrt{2429}}{2} n+\frac{49}{2}=-\frac{\sqrt{2429}}{2}
Simplify.
n=\frac{\sqrt{2429}-49}{2} n=\frac{-\sqrt{2429}-49}{2}
Subtract \frac{49}{2} from both sides of the equation.