Evaluate
308\lambda -\frac{208}{3}
Factor
\frac{4\left(231\lambda -52\right)}{3}
Share
Copied to clipboard
-\frac{490}{3}+45-28\lambda \left(-11\right)+49
Reduce the fraction \frac{980}{-6} to lowest terms by extracting and canceling out 2.
-\frac{490}{3}+\frac{135}{3}-28\lambda \left(-11\right)+49
Convert 45 to fraction \frac{135}{3}.
\frac{-490+135}{3}-28\lambda \left(-11\right)+49
Since -\frac{490}{3} and \frac{135}{3} have the same denominator, add them by adding their numerators.
-\frac{355}{3}-28\lambda \left(-11\right)+49
Add -490 and 135 to get -355.
-\frac{355}{3}-\left(-308\lambda \right)+49
Multiply 28 and -11 to get -308.
-\frac{355}{3}+308\lambda +49
The opposite of -308\lambda is 308\lambda .
-\frac{355}{3}+308\lambda +\frac{147}{3}
Convert 49 to fraction \frac{147}{3}.
\frac{-355+147}{3}+308\lambda
Since -\frac{355}{3} and \frac{147}{3} have the same denominator, add them by adding their numerators.
-\frac{208}{3}+308\lambda
Add -355 and 147 to get -208.
\frac{-208+924\lambda }{3}
Factor out \frac{1}{3}.
924\lambda -208
Consider -490+135+924\lambda +147. Multiply and combine like terms.
4\left(231\lambda -52\right)
Consider 924\lambda -208. Factor out 4.
\frac{4\left(231\lambda -52\right)}{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}