Solve for x
x=\frac{\sqrt{835}-10}{49}\approx 0.385640134
x=\frac{-\sqrt{835}-10}{49}\approx -0.793803399
Graph
Share
Copied to clipboard
98x^{2}+40x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\times 98\left(-30\right)}}{2\times 98}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 98 for a, 40 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 98\left(-30\right)}}{2\times 98}
Square 40.
x=\frac{-40±\sqrt{1600-392\left(-30\right)}}{2\times 98}
Multiply -4 times 98.
x=\frac{-40±\sqrt{1600+11760}}{2\times 98}
Multiply -392 times -30.
x=\frac{-40±\sqrt{13360}}{2\times 98}
Add 1600 to 11760.
x=\frac{-40±4\sqrt{835}}{2\times 98}
Take the square root of 13360.
x=\frac{-40±4\sqrt{835}}{196}
Multiply 2 times 98.
x=\frac{4\sqrt{835}-40}{196}
Now solve the equation x=\frac{-40±4\sqrt{835}}{196} when ± is plus. Add -40 to 4\sqrt{835}.
x=\frac{\sqrt{835}-10}{49}
Divide -40+4\sqrt{835} by 196.
x=\frac{-4\sqrt{835}-40}{196}
Now solve the equation x=\frac{-40±4\sqrt{835}}{196} when ± is minus. Subtract 4\sqrt{835} from -40.
x=\frac{-\sqrt{835}-10}{49}
Divide -40-4\sqrt{835} by 196.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
The equation is now solved.
98x^{2}+40x-30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
98x^{2}+40x-30-\left(-30\right)=-\left(-30\right)
Add 30 to both sides of the equation.
98x^{2}+40x=-\left(-30\right)
Subtracting -30 from itself leaves 0.
98x^{2}+40x=30
Subtract -30 from 0.
\frac{98x^{2}+40x}{98}=\frac{30}{98}
Divide both sides by 98.
x^{2}+\frac{40}{98}x=\frac{30}{98}
Dividing by 98 undoes the multiplication by 98.
x^{2}+\frac{20}{49}x=\frac{30}{98}
Reduce the fraction \frac{40}{98} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{20}{49}x=\frac{15}{49}
Reduce the fraction \frac{30}{98} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{20}{49}x+\left(\frac{10}{49}\right)^{2}=\frac{15}{49}+\left(\frac{10}{49}\right)^{2}
Divide \frac{20}{49}, the coefficient of the x term, by 2 to get \frac{10}{49}. Then add the square of \frac{10}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{15}{49}+\frac{100}{2401}
Square \frac{10}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{835}{2401}
Add \frac{15}{49} to \frac{100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{49}\right)^{2}=\frac{835}{2401}
Factor x^{2}+\frac{20}{49}x+\frac{100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{835}{2401}}
Take the square root of both sides of the equation.
x+\frac{10}{49}=\frac{\sqrt{835}}{49} x+\frac{10}{49}=-\frac{\sqrt{835}}{49}
Simplify.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
Subtract \frac{10}{49} from both sides of the equation.
x ^ 2 +\frac{20}{49}x -\frac{15}{49} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 98
r + s = -\frac{20}{49} rs = -\frac{15}{49}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{10}{49} - u s = -\frac{10}{49} + u
Two numbers r and s sum up to -\frac{20}{49} exactly when the average of the two numbers is \frac{1}{2}*-\frac{20}{49} = -\frac{10}{49}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{10}{49} - u) (-\frac{10}{49} + u) = -\frac{15}{49}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{49}
\frac{100}{2401} - u^2 = -\frac{15}{49}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{49}-\frac{100}{2401} = -\frac{835}{2401}
Simplify the expression by subtracting \frac{100}{2401} on both sides
u^2 = \frac{835}{2401} u = \pm\sqrt{\frac{835}{2401}} = \pm \frac{\sqrt{835}}{49}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{10}{49} - \frac{\sqrt{835}}{49} = -0.794 s = -\frac{10}{49} + \frac{\sqrt{835}}{49} = 0.386
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}